
Evolving Self-Organized Behavior
for

Homogeneous and Heterogeneous
UAV or UCAV Swarms

THESIS

Ian C Price, Second Lieutenant, USAF

AFIT/GCS/ENG/06-11

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or United
States Government.

AFIT/GCS/ENG/06-11

Evolving Self-Organized Behavior

for

Homogeneous and Heterogeneous
UAV or UCAV Swarms

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Ian C Price, B.S.C.S.

Second Lieutenant, USAF

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/06-11

Evolving Self-Organized Behavior

for

Homogeneous and Heterogeneous

UAV or UCAV Swarms

Ian C Price, B.S.C.S.

Second Lieutenant, USAF

Approved:

/signed/ 10 Mar 2006

Dr. Gary B. Lamont, PhD (Chairman) date

/signed/ 10 Mar 2006

Dr. Gilbert M. Peterson (Member) date

/signed/ 10 Mar 2006

Maj. Andrew W. Learn (Member) date

AFIT/GCS/ENG/06-11

Abstract

This research designs an off-line evolutionary system to create multi-UAV be-

havior capable of searching for and attacking targets. The design for this behav-

ior system assumes the UAVs have no apriori knowledge about undetected targets,

UAVs, or the environment. In addition, the system does not rely upon global com-

munications. WIth regard to the behavior design and approach, self-organization is

a potential solution since exemplar systems relying upon it tend to be exceptionally

robust, scaleable, and flexible.

The UAV behavior, evolved with a genetic algorithm, relies upon a behavior

archetype architecture. This design allows the system to evolve a small set of behaviors

that are selected based upon particular sense inputs to the UAVs. The sense inputs

summarize observable characteristics of each UAVs environmental representation such

as the density of sensed UAVs and a simple target associated pheromone. At its core,

the sets of behaviors are built upon behavior rules describing formation building rules,

safety, and target interaction.

To add another avenue in testing the scalability and robustness of UAV behavior

with regard to target destruction, the targets can effectively destroy UAVs as well.

This mutual ability on the part of both UAVs and the targets forces the resulting

behavior to be more robust. Additionally, by allowing the targets to retaliate, the

simulation has a greater degree of realism.

This approach to multi-UAV behavior is tested when the UAVs have similar

abilities towards target attack and detection and when sensor and attack abilities are

split into two different UAVs. With regard to these situations, the system demon-

strates effective behavior evolution. Additionally, the behavior strategies evolved are

scaleable with increasing UAV and target populations.

iv

Acknowledgements

Dr. Lamont,

Thank you for your patience, persistence, advice, and knowledge. I sincerely

thank you.

To my section mates in ENG1,

You have provided me with the support I needed to remain sane. Thanks.

To my Evolutionary Algorithms and High-Performance Computing Peers,

The occasional conversations greatly helped me vent. Thanks.

To my family,

You provided the support I needed on many of those long nights. Thanks.

My lovely, young wife,

Thank you for motivating me when I couldn’t see the light.

Ian C Price

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . xi

List of Tables . xiv

I. Introduction and Overview . 1
1.1 Problem Statement . 1
1.2 Key Concepts . 2

1.3 Research Goal . 4
1.4 Sponsor . 7

1.5 Assumptions . 7

1.6 Thesis Overview . 8

II. Self-Organization Background . 10

2.1 Self-Organization Definitions 10

2.2 Alternatives to Self Organization 17

2.3 Levels of SO . 18
2.4 Feedback Loops . 19

2.5 Example Behaviors . 20

2.6 General SO UAV Model 23
2.7 SO Conclusion . 26

III. UAV Background Information . 28

3.1 Benefits of UAVs . 28
3.1.1 Dirty . 28

3.1.2 Dull . 29
3.1.3 Dangerous . 29

3.1.4 Endurance . 29
3.2 Problems . 29

3.2.1 Operating Personnel 29

3.2.2 Cost . 30
3.2.3 Communication Bandwidth 30

3.3 Desired Improvements 30

3.4 Approaches to UAV Automation 31

3.4.1 Vectorizing UAV Needs 31

vi

Page

3.4.2 Direct Approaches 31

3.4.3 Rule Based . 33
3.4.4 Approaches Towards Specific Behavior 38

3.4.5 UAV Senses . 41
3.4.6 Exemplar System Models 44

3.5 Summary . 48

IV. High Level SO Model . 49

4.1 Bottom-up SO Framework Model 49

4.1.1 Environment 51
4.1.2 Macro State Transition Function 52
4.1.3 Markov Chain 53
4.1.4 Agents . 55

4.2 High-Level UAV and Environment Models 64

4.2.1 Environment 65
4.2.2 Agents . 69

4.2.3 Targets . 84

4.2.4 Engagement . 84

4.3 GA Design . 88

4.3.1 General methodology 88

4.3.2 Representation 88

4.3.3 Selection . 90
4.3.4 Mutation . 91
4.3.5 Recombination 91
4.3.6 Alteration of Scenarios 92
4.3.7 Fitness Function 92

4.4 Simulation Design . 93

4.5 Summary . 93

V. Low Level Design and Implementation 94

5.1 Variable and Subfunction Keys 94

5.2 Sensor Vision . 96
5.2.1 Explicit Communication 98

5.2.2 Target Sense Propagation 99

5.2.3 UAV Density Calculation 99

5.2.4 Selection of Behavior Archetype 100

5.3 Rule Equations . 102

5.3.1 Rule 1: Alignment 102

5.3.2 Rule 2: Target Orbit 102

5.3.3 Rule 3: Cohesion 104

vii

Page

5.3.4 Rule 4: Separation 107

5.3.5 Rule 5: Weighted Target Attraction 108

5.3.6 Rule 6: Flat Target Repulsion 109

5.3.7 Rule 7: Weighted Target Repulsion 110

5.3.8 Rule 8: Flat Attraction 112
5.3.9 Rule 9: Evasion 113
5.3.10 Rule 10: Obstacle Avoidance 115
5.3.11 Rule Summation and Normalization 117

5.4 Simulation Characteristics 118
5.4.1 Speed Normalization 118

5.4.2 Motion . 119
5.4.3 Engagement Modeling 120

5.5 Genetic Algorithm Functions and Algorithm 121

5.5.1 Crossover . 121
5.5.2 Mutation . 123
5.5.3 Generalized algorithm 124

5.6 Summary . 126

VI. Design of Experiments . 127

6.1 Design of Experiments 128

6.2 Metrics . 130
6.3 Homogeneous UAV Experiment 132

6.3.1 Environment 132
6.3.2 UAV Characteristics 133
6.3.3 Target Characteristics 133

6.3.4 Initial positions 134

6.3.5 Adaptive Scenarios 138

6.3.6 GA Values . 138
6.3.7 Expected Outcome 139

6.4 heterogeneous UAV Experiment 141

6.4.1 Environment 141
6.4.2 UAV Characteristics 141
6.4.3 Target Characteristics 142

6.4.4 Initial positions 143

6.4.5 Adaptive Scenarios 147

6.4.6 GA Values . 147
6.4.7 Expected Outcome 149

6.5 Summary . 150

viii

Page

VII. Analysis of Experiment Results 153

7.1 Homogeneous UAV Experiment 153

7.1.1 GA Fitness . 153
7.1.2 Scalability . 155

7.1.3 Selected Solutions 160
7.2 heterogeneous UAV Experiment 163

7.2.1 GA Fitness . 165
7.2.2 Scalability . 167

7.2.3 Selected Solutions 171
7.3 Summary . 179

VIII. Conclusions . 182
8.1 Definition of SO Model 182
8.2 Design of Simulation System 184

8.3 Design of UAV System 184

8.4 Testing Results . 186

8.5 Future Investigation . 186

8.6 Final Remarks . 188

Appendix A. Low-Level Simulation Design 189

A.1 Environment . 189
A.2 UAVs . 191

A.2.1 Physical Model 191

A.2.2 Sensor Model 192
A.2.3 Communications Model 192
A.2.4 Engagement Model 193

A.2.5 Behavior Model 193
A.2.6 UAV State in Simulation 194
A.2.7 UAV Summary 196

A.3 Targets . 196

A.4 Obstacles . 197
A.5 Simulation updates . 198

A.6 Connections to the GA 200
A.7 Mapping to SO model 200

A.8 Summary . 202

ix

Page

Appendix B. Simulation Design and Software Engineering 203

B.1 Fidelity Requirements 203

B.1.1 UAV . 203
B.1.2 Environment 204
B.1.3 Behavioral . 204
B.1.4 Overall Fidelity 204

B.2 Simulation Divisibility 205

B.2.1 Task Decomposition 205

B.2.2 Load Balancing approaches 209

B.2.3 Structural and Parallel Decomposition 210

B.3 Communication Library 211

B.4 Basic Algorithms . 211

Bibliography . 214

x

List of Figures
Figure Page

1.1. DarkStar UCAV . 2

1.2. Black Widow MAV . 3

1.3. Predator UAV . 4

2.1. SO Positive Feedback . 20

3.1. First Architecture . 32

3.2. Second Architecture . 34

3.3. Third Architecture . 35

3.4. Kadrovich distance example . 40

4.1. Graphical Representation of Algebraic SO System Relationships 64

4.2. Velocity Effects . 72

4.3. Sensor Shadowing . 74

4.4. Sensor and Active Communication Interrelation 76

4.5. GA Representation . 90

5.1. Flow of information between the distinct UAV components . . 96

5.2. Target Sense Propagation . 100

5.3. Density Sense Values . 101

5.4. Alignment Field Plot . 103

5.5. Stable orbit created by Orbitting, Flat Attraction, and Flat Re-

pulsion rules . 105

5.6. Orbiting Field Plot . 106

5.7. Cohesion Field Plot . 107

5.8. Separation Field Plot . 108

5.9. Weight Target Attack Field Plot 110

5.10. Target Repulsion Field Plot . 111

5.11. Weighted Target Repulsion Field Plot 112

xi

Figure Page

5.12. Flat Target Attraction Field Plot 114

5.13. Obstacle Avoidance Field Plot 117

6.1. Exemplar Fitness Histograph 131

6.2. Experiment 1 Initial Positions for 10 UAVs 136

6.3. Experiment 1 Initial Positions for 20 UAVs 139

6.4. Experiment 1 Initial Positions for 30 UAVs 140

6.5. Experiment 1 Initial Positions for 10 UAVs 148

6.6. Experiment 1 Initial Positions for 20 UAVs 149

6.7. Experiment 1 Initial Positions for 30 UAVs 150

6.8. Experiment 1 Initial Positions for 100 UAVs 151

6.9. Experiment 1 Initial Positions for 1000 UAVs 152

7.1. Experiment 1 Mean and Best fitness Improvement 154

7.2. Experiment 1 Fitness Change 154

7.3. Kruskal-Wallis ANOVA on Experiment 1 fitness 155

7.4. Experiment 1 Fitness Scalability 159

7.5. Experiment 1 Scalability of target destruction 159

7.6. Experiment 1 Behavior Archetype Selection Depiction 161

7.7. Experiment 1, Pertinent aspects of best solution 162

7.8. Experiment 1, Close Formation example 162

7.9. Experiment 1, Best solution attack behavior field plot 163

7.10. Experiment 1, 4th difficulty solution behavior 164

7.11. Experiment 2, Mean and Best fitness performance 166

7.12. Experiment 2, Mean and Best fitness performance changes . . . 166

7.13. Third Architecture . 168

7.14. Experiment 2, Fitness Scalability 168

7.15. Experiment 2, Most Scaleable Solution Fitness Scalability . . . 172

7.16. Experiment 2, Scalability of Area Search 172

7.17. Experiment 2, Small Simulation runtimes 173

xii

Figure Page

7.18. Experiment 2, Overall Simulation Runtimes 173

7.19. Sensor UAV Target Avoidance 174

7.20. 49th Generation Solution Simulation 175

7.21. Experiment 2, Small-scale formation 176

7.22. Experiment 2, Effects as formation scales 176

7.23. Experiment 2, Best Solution Sensor UAV behavior archetype plot 178

7.24. Experiment 2, Best Solution UCAV behavior archetype plot . . 178

7.25. Experiment 2, Display of Sensor Encoding 179

7.26. Experiment 2, Display of UCAV Encoding 179

7.27. Experiment 2, Field plot of typical UCAV behavior 180

A.1. Macro, Micro, Genetic Algorithm Level interactions 202

B.1. Simulation Task Illustration . 206

B.2. Illustration of computation divided across solutions 208

B.3. Illustration of computation divided across simulations 208

B.4. Illustration of Load balancing created with the farming Model . 210

xiii

List of Tables
Table Page

2.1. Comparison of Quoted Self-Organization Definitions 11

2.2. Sensing or Communication requirements to support specific ex-

emplar behaviors. 25

3.1. Example comparison of single layer architecture complexities. . 36

4.1. Simulation Features implemented in other investigations 66

4.2. UAV Simulation Levels . 70

4.3. Success rate for hitpoint based approach with only one UAV . . 85

4.4. Success rate for hitpoint based approach with two UAVs 86

4.5. Success rate for hitpoint based approach with three UAVs . . . 87

5.1. Key to Various symbols used in low-level design equations . . . 95

5.2. Key to Various subfunctions used in low-level design equations 97

5.3. Predator Flight Characteristics 120

5.4. Master Initialization . 125

5.5. Master Initialization Algorithm 125

5.6. Master Sending Jobs . 125

5.7. Response from master when client requests a job 125

5.8. Master Receiving a Score . 126

5.9. Master receiving the results from a particular run 126

6.1. Listing of how the specific features of self-organization are ad-

dressed within the system. 127

6.2. UAV specific variables that can be changed in an experiment . 129

6.3. Environment specific attributes for experimentation. 129

6.4. Environment specific attributes for experimentation. 130

6.5. Homogeneous Experiment UAV Characteristics 133

6.6. Homogeneous Experiment Target Characteristics 133

6.7. Homogeneous Experiment Population Characteristics 134

xiv

Table Page

6.8. Homogeneous Experiment, Initial UAV Positions and Bearings

for generations 0-49 . 135

6.9. Homogeneous Experiment, Initial UAV Positions and Bearings

for generations 50-59 . 135

6.10. Homogeneous Experiment, Initial UAV Positions for high scala-

bility test with 30 UAVs . 137

6.11. Homogeneous Experiment, Initial Target Positions and Bearings

for generation 0-49 . 137

6.12. Homogeneous Experiment, Initial Target Positions and Bearings

for generation 50-59 . 138

6.13. Initial Target Positions and Bearings for 30 UAV scalability mea-

surement scenario . 138

6.14. Ex 1, Ex 1 Adaptive Scenario Qualities 138

6.15. heterogeneous Experiment Sensing UAV Characteristics 141

6.16. heterogeneous Experiment UAV Characteristics 142

6.17. Homogeneous Experiment Population Characteristics 142

6.18. Initial UAV Positions and Bearings for generations 0-49 in het-

erogeneous experiment. 143

6.19. Initial UAV Positions and Bearings for generations 0-49 in het-

erogeneous experiment. 144

6.20. Initial UAV Positions and Bearings for heterogeneous experiment

scalability assessment. 145

6.21. Initial UAV Positions and Bearings for heterogeneous experiment

100 UAV behavior assessment. 146

6.22. Initial UAV Positions and Bearings for generations 1000 UAV

Simulation . 147

6.23. Ex 2, Initial Target Positions and Bearings 147

7.1. Results for homogeneous UAV experiment according to all 30

runs for the first 30 generations. The horizontal lines mark the

change of scenario difficulty. 156

xv

Table Page

7.2. Results for homogeneous UAV experiment according to all 30

runs for the last 30 generations. The horizontal lines mark the

change of scenario difficulty. 157

7.3. Percent of Environment searched by UAVs. 158

7.4. Results for heterogeneous UAV experiment according to all 30

runs for the first 30 generations. The horizontal lines mark the

change of scenario difficulty. 169

7.5. Results for heterogeneous UAV experiment according to all 30

runs for the last 30 generations. The horizontal lines mark the

change of scenario difficulty. 170

A.1. Listing of the intervals of operation for each behavior model and

the size of the behavior model space, U.Mbehavior. 194

A.2. Listing of the UAV attributes that do not belong within the

SUAV space. Rather, these attributes make up the static USTATIC

attributes. 196

B.1. Comparison of task division strategies 209

B.2. Side-by-side comparison of task division strategies. 209

B.3. Client Algorithm . 212

B.4. Client operation algorithm . 212

xvi

Evolving Self-Organized Behavior

for

Homogeneous and Heterogeneous

UAV or UCAV Swarms

I. Introduction and Overview

This chapter provides a high-level overview for the research conducted in this

investigation. It covers an overview of unmanned aerial vehicles and self-

organization, the goals and objectives of this research investigation, and the sponsors.

Chapter one also highlights the assumptions and risks of this research and provides a

overview for the thesis document.

1.1 Problem Statement

Unmanned aerial vehicles offer advantages over manned aircraft. In a sense,

UAVs offer advantages characterizable as ”the dull, the dirty, and the dangerous” [65].

UAVs can have longer persistence and loitering - they accomplish the ”dull” missions

with far less fatigue than human pilots. They can operate in areas exposed to nuclear,

chemical, or biological agents without risk to humans - the ”dirty” missions. Almost

more importantly, UAVs do not risk human life when on ”dangerous” missions. It is

for these reasons that contemporary research is examining the control of many UAVs

simultaneously. Potential ways in which UAVs will be operated include reconnaissance

and location of targets [20], attack and pursuit [40],and even automated jamming

missions [41].

Effective UAV employment with currently applied technology, however, requires

a great deal of human supervision and communication bandwidth. Each unmanned

aircraft requires at least one human pilot despite technological abilities to support dif-

ferent control structures [65]. Additionally, as of 2003, UAVs are excessive consumers

of military bandwidth [76].

1

According to a senate committee suggestion in 2003, by 2010, one third of the

USAF aircraft will be unmanned [73]. The purpose of this suggestion is to limit the

exposure of pilots to danger. Coupling this with a potential pilot shortage in the

USAF [30] [67], there are two significant problems - unmanned aircraft to support US

interests will be available but there may not be enough pilots and the military com-

munications infrastructure may not be able to provide a one-to-one control structure

to operate UAVs on an individual basis. For this reason, research must investigate

methods of making UAVs autonomous [26]. By creating autonomous UAV systems,

the reliance upon individual human control and interaction is reduced.

Self-organization is a promising answer to UAV automation. By harnessing

organizational concepts inspired by colonial insects, wolf packs, and even economics,

multi-UAV systems could successfully function autonomously. In observing groups of

UAVs as a singular system rather than individual vehicles, the potential for emergent

self-organized behavior can be realized.

Figure 1.1: The DarkStar is a unmanned combat aerial vehicle intended to operate
as a stealth attack platform.

1.2 Key Concepts

UAVs. With all the attention given to UAVs, it is quite apparent that they are

necessary components for future air forces [80] [41]. And to this end, a great deal of

research into effective fielding and operation of these forecasted UAVs has been done.

2

From reconnaissance and location of targets [20] to attack and pursuit [40] and even

automated jamming missions [41].

Figure 1.2: The Black Widow is an example micro-aerial vehicle or MAV.

Currently UAV model development runs the gamut from large vehicles such

as the Global Hawk towards tiny micro aerial vehicles (MAVs) like the Black Widow

produced by AeroVironment Corporation [43] (Figure (1.2)). These different vehicles

are destined to perform many different types of missions. Predator UAVs (Figure

(1.3)) armed for the first time in 2002, have even led to the armament of United

States UAVs and use as weapons platforms [2]. In short, UAVs are quickly becoming

capable vehicles that can perform a myriad of tasks.

Self-Organization is a systemic approach to unifying multi-agent collections or

systems [11]. These systems can be inorganic, however the biological systems produce

more apparently stunning behaviors.

An exemplar self-organized system is ants when they forage [9]. When ants

have not found food, they apparently search randomly around the nest, dropping

pheromones for communication. When an ant locates food and returns to the hive, it

leaves a trail of pheromones between the hive and the food-source. When other ants

are exposed to the pheromone signal released by the first ant, they have a greater

likelihood of traveling the pheromone trail rather than search randomly based upon

3

Figure 1.3: The Predator UAV is a long endurance, medium altitude platform that
can operate in both reconnaissance and attack missions. [2]

the pheromonal strength. When those new ants travel the pheromone trail, they

release their own pheromones and in that way increase the strength of the trail. This

trail formation is a positive feedback loop created by a stigmergic communication

scheme [11]

Flocking birds and foraging bees demonstrate self-organized behavior as well.

Birds maintain a loose formation when flocking which seemingly obeys a few basic

rules [66]. Foraging bees execute self-organizing behaviors in the way they search for

food.

In many cases, the operation of self-organized systems can be described as the

interaction of a set of behavior rules [11]. These different rules interact through

positive and negative feedback loops to create self-organized behavior.

1.3 Research Goal

The overall and guiding goal of this research is: the generation of a new model

utilizing self-organizing principles to coordinate11 UAV swarm behavior. This new

1In this case, coordinate refers to the control of UAV behaviors through selection of which be-
havior(s) are more appropriate at particular times

4

model demonstrates comparable effectiveness to other approaches and provides a

foundation for future development along the same lines.

This overall goal consists of three major objectives:

1. Define a mathematical model for UAV, environmental, and self-organized be-

havior.

2. Create a simulation environment to test UAV self-organized behavior compo-

nents.

3. Test and Analyze the effects of the self-organized method in various missions.

Define The principle reason for the first major objective is the creation of an

effective definition of self-organization applicable to multi UAV control. This defini-

tion explains and reinforces the need for communication, job or task breakdown and

distribution amongst disparate system entities, and the notion of self-organizational

locality or neighborhoods.

The definition framework is then used in developing a symbolic mathematic

model. The math model facilitates exact implementation of self-organizing systems.

In addition, this symbolic model addresses features identified as being pertinent to

self-organized systems. This mathematical framework is robust and flexible while

providing the necessary support to develop other systems using this approach. With

regard to the self-organized mathematic model developed in this effort, the model has

general applicability towards the creation of any self-organized system.

Following the definition of a general self-organization math model, the needs and

features of UAVs and their environment is considered. Naturally, this leads to the

creation of a UAV and an environment model interfacing with the self-organization

model.

Lastly, creating a well-performing self-organized system requires specific con-

sideration. In biology, such systems do not immediately arise. Rather, they evolve

over long periods of time [11]. In addition, investigations attempting to create self-

5

organized systems cite the difficulty for human designers to completely account for

all possible situations [22] [49]. Due to the difficulty in designing a self-organized sys-

tem by hand, those investigations relied upon an evolutionary algorithm to develop

self-organized behaviors. For this reason, an evolutionary algorithm is created. A

mathematical model for the evolutionary algorithm is also created.

In a sense, the UAV behaviors created by this research are capable of operating

in a hands off manner in an unknown environment against an unknown enemy force

where the UAVs are not directly aware of their entire force strength and disposition.

This entails behavior addressing the specific discovery and attack of targets as well

as facilitating formations for distinct behaviors.

Create The second major subgoal is the creation of a simulation which imple-

ments the models defined in the first goal. This simulation addresses the appropriate

levels of fidelity for UAVs, environment, communication, sensing, and engagement.

In addition, the simulation allows for modifications that implement other potential

models.

Likewise, this system necessarily requires some form of efficient parallelization

to handle the extreme amount of computation [63].

Test and Analysis The final objective examines the effectiveness of the devel-

oped simulation system and mathematical design. In testing the system, appropriate

scenarios are developed in the simulation environment. These scenarios allow compar-

ison to other UAV automation systems when possible, particularly those addressing

target discovery and attack [47].

In testing a system, appropriate metrics are identified to adequately draw con-

clusions. These metrics include but are not limited to the total area searched or

covered by the UAV systems, overall UAV attrition, the number of targets located,

or the number of targets destroyed. In a sense, the metrics are capable of measuring

performance of the desired system behavior. That is, the metrics indicate how well

they UAV systems search the environment as well as their ability to destroy targets.

6

In addition to metrics that report the direct performance of the self-organized

UAV systems, there are other metrics developed which measure the quality of self-

organization. Potential metrics include but are not limited to exported entropy [61],

job switching rate [39], or the baseline increase by the self-organized system over that

of non-self-organized systems.

1.4 Sponsor

This research supports the goals of the Air Force Research Laboratory (AFRL).

The application of self-organization to UAV systems is of especial interest to Mike

Foster of the Virtual Combat Laboratory (VCL) at AFRL. This research supports

ongoing investigation into the capabilities and fielding of UAVs.

In addition to the AFRL VCL, this investigation furthers the efforts of the

AFRL Information directorate Embedded Information Systems Engineering branch.

This research into UAV systems that dynamically adapt to situations supports the

work performed by Dr. Robert Ewing’s group.

Additionally, this research is of interest to the AFRL Sensors directorate and

Vehicles directorate.

1.5 Assumptions

The research makes a few assumptions with regard to the model and created

simulation. First, it utilizes a two dimensional top-down view. This view does not ad-

dress altitude. A two dimensional simulation environment was selected over a three

dimensional one since it simplifies the necessary calculations for simulation. Addi-

tionally, it assumes that the UAVs operate with a first order flight model. Again, the

simpler motion model provides for faster simulation and evolution of solutions. Com-

munication between components is highly abstracted and assumes a unidirectional

communication ability [47, 72]. Communication is thus modeled to, again, simplify

the amount of computation required for behavior evolution. Engagement between

7

UAVs and targets is based upon a hit point damage model. This was selected over

probabilistic engagement models as it provides more stable tactical simulations. And

lastly, it is assumed that the UAVs identify targets immediately and effectively. This

final assumption allows for more immediate effects upon UAVs in that their behavior

is modeled as an optimal sensor scenario and evolve more concrete behaviors.

With respect to these assumptions, this work does not focus on providing a

UAV simulator with extreme fidelity. Rather, the assumptions place this UAV sys-

tem on par with other two-dimensional UAV behavior simulators developed by AFRL.

Since this system requires many thousand simulations, excessively accurate models

or calculations only slows system operation. This research investigation focuses upon

demonstrating the efficacy of a self-organizational approach towards multi-UAV sys-

tem behavior rather than production of an extremely-high fidelity simulator.

1.6 Thesis Overview

• Chapter 1: This chapter introduces the problem and research goals.

• Chapter 2: This chapter provides a thorough overview of self-organization and

presents the features that make self organization desireable.

• Chapter 3: Provides a comprehensive problem background in multi-UAV simu-

lations and an examination what others have done to address the problem area

of autonomous UAV systems is the impetus of this chapter.

• Chapter 4: This chapter describes a mathematical model for self-organization

utilizing the features illustrated in Chapter 2 specifically addressing communi-

cation, entity-oriented task selection or assignment, and the notion of locality.

Creation of a math model for the UAVs and the environment which connects to

the self-organization model is also included in this chapter. The development of

UAV and environment models is described in this chapter as well as the genetic

algorithm used to evolve the behaviors.

8

• Chapter 5: The low-level design and implementation of the system is described

in this chapter. It specifically deals with the particular formula design for be-

havior rules, how behaviors are selected and mapped to the direction UAVs

travel. In addition, the particular sensor system is described along with the

system senses and the genetic algorithm functions.

• Chapter 6: The development of metrics for measuring system performance and

efficiency alongside behavior is accomplished in this chapter. It then defines

the specific scenarios to be tested with the system and the expected results and

behaviors.

• Chapter 7: Analysis of experimentation results is performed in this chapter. In

addition, this chapter provides the major trends and behaviors observed in the

experimentation.

• Chapter 8: The final chapter presents concluding remarks and recommendations

for future research into using self-organization for UAV behaviors.

• Appendices: Data supporting the simulations/experiments, if necessary. Data

can by anything from difficult mathematical developments, where the result is

key in previous chapters but the development itself serves as a side issue, to

actual raw data, depending on the topic.

9

II. Self-Organization Background

To effect better performance from multi-part systems or multi-agent systems,

application of self-organization (SO) is a viable consideration [38]. Self-organization

is observable in both biological and nonbiological systems [11]. Three aspects of self

organization are addressed to completely answer how self-organization applies to sys-

tems like homogeneous and heterogeneous collections of unmanned aerial vehicles

(UAVs). These aspects address what SO is, what desirable behaviors and capabilities

are seen in extant systems, and what expected results are from applying SO to UAV

systems.

2.1 Self-Organization Definitions

To understand self-organization as applied to UAV behavior, it is important to

understand self-organization in a broader sense. However, literature does not com-

pletely agree on the definition of self-organization (SO). It is for this reason that a

new and combined definition for SO is proposed as related to UAVs. The following

list of definitions describes varying SO views.

1. Heylighen According to Heylighen [31], ”[s]elf-organization is a process where

the organization (constraint, redundancy) of a system spontaneously increases,

i.e. without this increase being controlled by the environment or an encompass-

ing or otherwise external system.” Also, he goes on to state, ”Self-organization

is basically a process of evolution [¦ ¦ ¦] where the development of new, complex

structures takes place primarily in and through the system itself.”

2. Coveney Coveney [15] describes self-organization as ”the spontaneous emergence

of non-equilibrium structural organization on a macroscopic level, due to the

collective interaction between a large number of (usually simple) microscopic

objects.”

3. Camazine [11] relates self-organization as ”[¦ ¦ ¦] a process in which patterns at

the global level of a system emerge solely from numerous interactions among the

10

Table 2.1:

Heylighen [31] Coveney [15] Camazine [11] Collier & Taylor
[13]

Type of Focus
on SO

as a process attribute of a
system

as a process attribute of a
system

Indications system or-
ganization
”spontaneously
increases”

Macroscopic
emergence of
organization

Global emer-
gence of organi-
zation

Three specific
features

Cause unclear microscopic in-
teractions

lower-level inter-
actions

unclear

lower-level components of the system. Moreover, the rules specifying interac-

tions among the system’s components are executed using only local information,

without reference to the global pattern.”

4. Collier and Taylor Collier and Taylor [13], explain that their definition of SO

are enumerated in a list of features

(a) ”The system is composed of units which may individually respond to local

stimuli.

(b) ”The units act together to achieve a division of labor.

(c) ”The overall system adapts to achieve a goal or goals more efficiently. Of

the five conditions Collier and Taylor go on to define for a system to be

self-organized, two are prominent:

• The units must alter internal state based on their observable input values

and the states of other units.

• No single unit or non-communicative subset of units achieves the system’s

goal as well as the collection.

Combination of the viewpoints presented in each of these self-organization defin-

itions reveals important aspects for a more-encompassing self-organization definition.

Table 3.1 identifies some of the critical concepts in these definitions.

11

Self-organization is a mix of these four definitions. From the Heylighen [31] view,

successful self-organization is indicated by a marked increase in system organization

and effectiveness. Additionally, the notion that it is the system that evolves and not

the environment, though obvious, provides a framework for what is encompassed by

SO.

Coveney [15] and Camazine [11] explicitly state that the resultant self-organizing

behavior is due to lower-level or microscopic component interaction. In many cases,

these lower-level components are usually describable by simple rules which, when

the components are combined in large numbers, affect the group or system emerging

behavior [11].

The feature based approach of Collier and Taylor [13] is unique in that it ex-

plicitly states what makes a system self-organized. Major differences between this

definition and the others are the recognition of a specific system objective, that the

individual components change their states based upon their inputs and their neigh-

bors’ states, and that specific components of the system are less successful. These

distinct features are intrinsic to their definition and allow it to be explicitly applied

to sensor networks and other engineered systems.

Of particular interest with the Collier and Taylor definition is the identification

of a specific system goal. Such a goal is not easily extracted from natural systems [13].

However, with an engineered system, it explicitly functions to achieve an objective.

For example, in a self-organized sensor network, the objective of the network is the

maximization of detection. If an objective is identified, the quality of each individual

component’s individual ability to achieve the objective is comparable to the system’s

entire ability.

In this way, the constraint that the system achieves its objective more effi-

ciently than each individual operating alone describes the operation of self-organizing

systems. Basically, the performance of a self-organizing system, with respect to its

12

objective, performs better than a system with equal component population in which

the components act purely individually in a non-self-organized fashion [13].

The specification of individuals changing their state based upon observations

and neighbors limits the capabilities of the individual interactions within their en-

vironment. Individuals have a neighborhood in which they observe and make their

changes to their own state, the environment state, and the state of other individuals

based solely upon local environmental representation [13]. This view is also shared

by Camazine [11] in that the specific interactions between the components are based

upon local knowledge.

From the different definitions in the above sections, an applicable characteriza-

tion of self-organization which is highly useful for UAV behavior is extracted. Self-

organization is well defined by the following features:

1. An attribute of a system [15] with regard to a specific attribute or goal-like

quality [13],

2. made up of many lower-level components [15] [13],

3. that interact to produce system wide behavior [11] [15] [13],

4. which performs better than achievable by purely individual actions [13].

5. These components select their behavior determined based upon ’local’ observa-

tions made by each component [11] [13],

6. without global knowledge of a pattern, strategy, global direction, or specifically

hierarchical architecture [11].

SO Definition Feature 1 This definition of self-organization easily describes what

features of SO behavior are inclusive to an organized system. First of all, based on

feature 1, self-organization is a system attribute with a specifically focused objective.

It is not a process or method of UAV evolution as suggested by Heylighen [31], but

rather a type of ordered interaction which a UAV system implements. This suggests

13

that a self-organized UAV system is a static solution and not an evolving system due

to the emphasis on being an attribute and not an evolutionary process.

Additionally, the inclusion of an objective goal-like quality into the definition

provides a method for measuring the system performance [13]. The objective in

question is not necessarily ingrained into the lowest components of the SO system;

rather, it is a measurable quality or function observed from the global system as a

whole. As such, this objective might not be directly implemented in a self-organized

system. For example, a system objective is the complete elimination of all local targets

or protecting a high value component from being destroyed whereas the individual

UAVs are not specifically programmed to maximize a particular behavior such as

target destruction. In a sense, direct implementation of this objective makes the use

of self-organization irrelevant as an attribute.

SO Definition Feature 2 A system of UAVs is naturally composed of individual

UAVs. The lower-level components in a UAV system are clearly the UAVs themselves.

In this case, the UAVs when acting as individuals are not self-organized. However,

a collection of UAVs when together could operate in a SO fashion. The basic caveat

here for UAV SO systems is that the organizing behavior is only observable when

considering multiple agents or UAVs.

SO Definition Feature 3 Each UAV’s behavior must influence and be influ-

enced by other UAVs to fulfill feature 3. This suggests a method of communication

or stigmergy [11] between the individual UAVs. This interaction is either explicit

or implicit. Explicit communication is performed when different components to an

SO system perform actions with the intention of communication. Another term for

explicit communication is signals [11].

Implicit communication is at the heart of SO systems and provides much of

their mystery. Implicit communications, or cues, are stimuli that ”convey information

incidentally” [11]. Implicit communication is difficult to predict or understand.

14

Implicit communication is very closely related to stigmergy [11]. Stigmergic

communication is the passing of information between agents by using cues created in

the environment. For example, ants use stigmergy when they communicate by using

pheromones [11]. The pheromones do not explicitly carry any communicative value.

However, they change the environment in ways affecting other ants’ behavior.

SO Definition Feature 4 This requirement restricts SO systems to those in which

the interaction between the systemic components synergistically improves the overall

system above independently operating components. The interaction and coordination

between the differing system components must raise the system’s ability to accomplish

the goal. In this way, SO is a synergistic improvement to the performance of a set of

components through their implicit and explicit interactions.

SO Definition Feature 5 The requirement to only use local information in mak-

ing decisions can be seen as a description of UAV sensor and communication capabili-

ties. This, in a sense, places a direct definition of UAV abilities and the scope of each

individuals capabilities in accomplishing the goal. However, the definition of ’local’

is unclear; it does not give an explicit definition of what locality is with respect to

UAVs. In this regard, ’local’ is left as an implementation decision in design of actual

self-organizing UAV systems. To enable better scaling of a final system, however, it

is suggested that the locality constraint rely upon a value distinct from the environ-

ment. For example, if a SO sensor system is being constructed, the communication

or sensing range of each sensor is defined as a concrete value and not dependant upon

the the environment. If the example sensor communication ranges or sensor ranges

are based upon a percentage of the environment size or sensor network position, then

the resulting behavior may not be scaleable with large populations.

SO Definition Feature 6 The last feature is the crux of self-organizing systems.

Kleeman [37] states, ”The difficulty determining whether a behavior is self-organized

or not for complex organism is that the observer must be sure that the organism

are not aware that their actions create the group behavior as a side-effect.” In the

15

basic sense, Feature 6 prevents other strategies that result in behavior similar to

self-organization. Such alternatives are listed in the section (2.2).

An illustrative exemplar definition is the solar system. Though inorganic, the

solar system is self-organized. Each planet in the solar system resides within the

micro-level. The macro-level consists of all planets in the solar system. Based upon

the definition of self-organization above encoded within the six features, the solar

system is self-organized.

Feature 1: The solar system is composed of all entities residing within Pluto’s

orbit of Sol. Being a non-biological system, identifying a goal-like attribute is difficult.

However, in this case, an assigment is the stability of the solar system as a whole.

Feature 2: This feature is satisfied since the system micro-level is composed

of smaller components, the sun, planets, moons, asteroids, and various other stellar

objects.

Feature 3: Each of the components interacts with the others via gravity. In this

case, the agent stimulus is an implicit cue since it does not explicitly communicate

any known information.

Feature 4: Since the goal requires a system-wide characteristic be filled, no

individual entity on the micro-level satisfies the goal alone. Because the different

entities must interact to produce stability, this feature is satisfied.

Feature 5: The different entities alter their directions, velocities, and accelera-

tions based upon the gravitic interactions between surrounding entities. In this way,

the different entities simply follow local information to produce their global behavior.

Feature 6: Clearly, each of the entities in this SO solar system model operates

without a concept of orbits or how their particular actions influence the global level.

The combined fulfillment of these six features heavily suggest that the solar

system, with regard to stability and the definition used here, is self-organized. In

16

addition to the solar system, many other systems are self-organized within the auspices

of this definition.

2.2 Alternatives to Self Organization

Other organizing behaviors, discussed in [11] and [37], include but are not limited

to:

1. Leader Initiated - a hierarchical system in which a leader directs the other

components to follow a specific plan.

There are many reasons why SO is preferred to these other methods. Leader

initiated (LI) systems require some sort of leader or hierarchical implementation.

LI systems appear effectual when the leader is capable of processing all of the

information while effectively coordinating the actions of the other components.

However, in larger systems, a leader become a bottleneck and is unable to

coordinate system activities. Also, a designated leader becomes a liability in

a UAV system - if the leader is destroyed, the entire system may be placed in

jeopardy or temporary chaos. Additionally, the information owned by the leader

may be lost. These two disadvantages of a LI system are very disadvantageous

to a UAV swarm.

2. Recipes - a step by step method or procedure to accomplish a task.

Use of recipes does not appear advantageous to a UAV system, either. To

implement a recipe requires a complete understanding of all UAV tasks and

missions and to script them into the UAVs. This scripting may eliminate part

of the flexibility desired in a self-organizing system [11].

3. Blueprints - ”a compact representation of the spatial or temporal relationship

of the parts of a pattern” [11].

The blueprint approach suffers from the same problems as recipes but on a

larger scale. Since blueprints are descriptive and appear to be inflexible, they

are not desirable in a system that must act with flexibility.

17

4. Templates - ”a mold that is a pattern for a task” [37].

The use of a template or mold requires environmental attributes to guide the

system. Such attributes are not guaranteed to exist within the environment in

which a UAV system may be deployed. Additionally, if a UAV system solely

uses details of the environment to orient and decide, then the entire system is

manipulated by intentional alterations to the environment.

2.3 Levels of SO

Perhaps, one of the best ways for examining the notion of self-organization is

by using a two layered approach [11] [37] [62]. In this two layered view, the individual

components exist on a microscopic, or entity, level whereas the self-organizing system

is seen on a macroscopic, or global, level.

Each component of the system operates only with stimuli obtained from the

micro level. Additionally, the individual components almost completely effect change

on only the micro-level; the individual SO system components are hard-pressed to

alter the macro-level.

When examining a SO system on the global level, emerging patterns of behavior

are observable. It is these observable patterns in which the SO system is considered

self-organized. Central to this process is that local information, interactions, and

decision making taken from the entities on the micro-level produce universal patterns

at the global-level. A self-organized system in this view is simply a virtual global

entity expressing patterns caused by existing agents.

The description of macro and micro levels does not preclude multi-level systems.

That is, a system which is self-organized at many different levels. In this way, a

particular SO system exists within a series of levels described as a macro or micro

level to a different system.

A major difficulty in creating SO systems stems from connecting actions per-

formed at the entity-level to the behavior which emerges at the global-level [62] [22].

18

In this way, it is very problematic to decompose desired self-organized behavior into an

all-inclusive entity behavior description; it is almost impossible to completely predict

how entity-level interactions combine to create self-organized global-level behavior.

To successfully generate explicitly engineering SO systems which completely achieve

their goal, SO systems are frequently evolved [22] [49]. By having evolutionary al-

gorithms evolve SO system behavior, the solutions better define and connect entity

actions to global performance.

2.4 Feedback Loops

Self-organized systems rely upon feedback loops to coordinate agent-level be-

havior [11]. Feedback loops come in two varieties: positive and negative. Positive

feedback loops serve to increase the expression of something in question whereas neg-

ative feedback loops quell said expression.

An example of a positive feedback loop is population growth [11]. As a particular

population grows, the number of individuals which potentially reproduce grows. In

this way, the population grows at a faster rate as the population increases. Another

positive feedback mechanism is ant trail formation [79]. This effect is seen in Figure

(2.1).

Negative feedback, on the other hand, lessens expression of particular attributes

or qualities. This particular reduction effect is seen in many systems. The rise of

insulin release after a meal high in sugar is an example of a negative feedback loop [11].

As insulin is released, it reduces the blood-sugar levels. Another example of a negative

feedback loop, the effect of time on ant pheromone trails, is seen in Figure 4 [79].

As time passes, the strength of pheromone left on an ant trail diminishes. As the

pheromone strength drops, ants are less likely to travel that trail.

It is worth noting that these particular behaviors have specific uses with respect

to SO systems. Positive feedback loops typically cause the system to create more

19

Figure 2.1: Ants are subject to feedback loops. As ants follow a path, the
pheromones they drop make it more likely that other ants likewise follow the path.
On the other hand, evaporation causes the pheromones to evaporate and makes paths
that are not renew disappear. [79]

organization in an environment. In this sense, positive loops incite the system towards

organization and cooperative behavior [11].

2.5 Example Behaviors

There are many different types of self-organized systems which have attributes

or designs which incorporatable into a SO UAV system. Three specifically examined

behaviors include clustering, schooling, and foraging.

1. Clustering There are many self-organizing systems in which the individual com-

ponents move to a central location. This movement of the individual system

components to a centralized location is called clustering or aggregation [11].

Clustering behavior is predominantly investigated in biological systems. There

are many such systems from bark beetle feeding aggregations to penguin young

huddling for warmth [11]. Some of the biological reasons for clustering, accord-

ing to [33] are:

• “Reduction of physical stress”

• “Facilitation of coprophagy”

• “Increase in efficiency of alarm responses and antipredator behavior”

• “Faster development and more efficient reproduction”

20

The reasons for clustering presented by [33], although describing biological sys-

tems, are also useful when applied to UAVs. Clustering is potentially advan-

tageous to UAV systems by allowing the components to better communicate,

coordinate, and increase their sensing capabilities.

Clustering is also be a precursor to UAV attack. Kleeman [37] used bark beetle

feeding aggregations to describe a simultaneous clustering attack by UAVs:

This model has application to UAVs as a form of attack response. For exam-

ple, the mission of a group of UAVs may be loitering over an enemy location

and firing upon threatening target. Each UAV is equipped with sensors that

detect enemy fire or ”lock-on”. All UAVs that detect enemy fire or a ”lock-on”

aggregate towards the area around enemy action and fire upon the target.

Kleeman [37] describes the coordination as being controlled by a ”pheromone”

signal. The strength of this signal is proportional to the number of aggressive

acts observed by the UAVs. Using a method similar to the beetles, the UAVs

distinguish between the apparent value of joining one particular attacking cluster

over another.

2. Schooling There are many systems in which the components “display synchro-

nous and coordinated movement” or schooling [46]. The schooling behavior is

observed in fish schools and bird flocks by their coordinated movements [11]

Like clustering, schooling has many beneficial results for the biological systems

which implement it. For the most part, schooling is used by SO systems in

avoiding predation and group hunting [11]. These purposes of schooling lend

themselves very clearly to a UAV system.

Examples of protective schooling examples are “flash expansion” and the “foun-

tain effect” [11]. “Flash expansion” is the immediate increase of distance be-

tween the components of the schooling system. This is usually caused by a

predator attempting to capture prey from the school. By immediately expand-

ing, the schooling behavior has the chance of confusing the predator and foiling

21

its attempt. The “fountain effect” is an evasive technique “in which a school of

small, slow-moving prey outmaneuvers a predator by splitting into two groups,

each of which moves in opposite directions and regroups behind the preda-

tor.” [11].

Kleeman mentions the use of schooling as a method of UAV defense against

missiles [37]. Additionally, application simulation of this behavior to UAVs has

been examined by other researchers [46]. The research in other works includes

the use of schooling to allow communication, avoid targets, and perform recon-

naissance.

3. Foraging Foraging [21] is

• wandering in search of food or provisions.

• making a raid, as for food[···]

• conducting a search; rummaging.

This type of behavior is mostly concerned with identifying and exploiting promis-

ing sources of food. In particular, two types of models are identified: bees and

ants. Both of these models identify the best food sources and exploit them.

The bee model makes a distinction between ”employed and unemployed” for-

agers [11]. The distinction, simply put, is that employed foragers find the food

sources and relate that information to unemployed bees who then exploit that

source if it is of value [11]. This simple organization results in the optimal divi-

sion of bees obtaining nectar from food sources according to the sources’ relative

qualities.

The ant model does not rely upon an active communication signal, but rather

a stigmergic one. Instead of relying on direct communication at a central point,

as accomplished by the bee model, ants utilize a pheromonal model to mark

trails. When ants run across a pheromonal trail, they are likely to follow that

trail. As more and more ants use the same trail, the pheromonal strength grows

and attracts more ants [11].

22

The trail building behavior of ants is taken to an extreme when examining army

ant raids. Army ant raids use the stigmergic principles to guide an army of up

to 200,000 blind individuals to find and kill much larger prey [11]. The basic

principles of normal ant foraging hold with the exception of a swarm front. The

swarm front is a slow-moving portion of the raid in which the ants are actively

attacking and killing prey.

The foraging behaviors lend themselves to target identification and destruction

[37]. Both of these models could be used to identify targets, their locations,

and their relative quality. The bee model uses explicit communication for an

employed forager to express target locations to unemployed foragers. According

to Kleeman, this approach works well for a group of UAVs that must strike

a series of targets. The main impetus with this model is that the individuals

relay information about targets to each other at a central point. It appears that

this model works exceptionally well if the UAV system incorporates returning

to a base for repairs or to a refueling station between attacks. In this particular

situation, the UAVs communicate target locations while refueling and rearming.

The ant-based model appears more suited to larger, swarming UAV SO sys-

tems. The use of a pheromonal trail-building strategy lends itself more towards

dynamic modifications. There are two benefits of using the ant model over

the bee model: the ant model utilizes all UAVs at the same time without the

need for an unemployed caste of workers and its components have need for less

individual capability. Additionally, the lack of sophistication in individual com-

ponents is heavily supported by the success of extremely large numbers of blind

components perform in army ant raiding.

2.6 General SO UAV Model

By combining the different desired behaviors, a model supporting the expression

of those behaviors is developed.

23

Implementing Clustering Clustering requires some form of coordinating signal

[11]. There are three different methods for coordination: chemical, mechanical, and

visual [11]. It appears that for an SO UAV system to implement clustering, it must

have some form of analog to these biological senses.

Use of pheromone like markers is one way in which UAVs could communicate

clustering cues. Instead of a chemical pheromone, as in insects and other biological

systems, UAVS might implement a radio message system. For example, each UAV

simply broadcasts a radio pulse when it locates a target as suggested by Kleeman

[37]. Or, instead of a radio signal, UAVs perform an airborne version of the waggle

dance [11] when they locate targets.

But this use of active communication may be unnecessary. Instead of a coor-

dinating signal, UAVs cluster when they detect either hostile targets nearby or other

allied UAVs begin to cluster. Such a system does not need a specific communication

signal, but it does require a sophisticated sensor suite which capable of extracting

very specific information from its environment.

Of importance here is that to implement clustering, UAVs must be able to either

sense each other or engage in at least rudimentary communication.

Implementing Schooling Schooling relies on information relating to the align-

ment and direction of neighboring UAVs. As such, schooling requires a method for

determining the relative position and motion vector taken by each sensed UAV. This

particular need is satisfied by either a sophisticated detection system or by a com-

munication construct in which each UAV broadcasts this information to each other

neighboring UAV.

Implementing Foraging Foraging is a very complicated behavior example to in-

corporate into a SO UAV system. Like clustering, foraging requires some form of

communication method. The models implement both explicit communication (bee

model) and pheromonal stigmergy (ant model). The deciding factor in which forag-

ing model is implemented is based upon the capabilities of the UAVs. Based upon

24

the generalizations seen in natures, it seems that if the UAVs have greater sensing

capabilities, they implement the bee model. Otherwise, given larger numbers and

diminished sensing capability, the ant model seems more efficient.

The bee model relies upon communication at some central location. As such, the

UAVs require a specified meeting place. Additionally, communication at the central

location is not necessarily trivial - the communication must express the approximate

direction, distance, and relative value of located targets [11]. In a UAV system,

this communication could be performed through any form of UAV communication

system like that required for active schooling communication. Like in clustering,

the UAVs could attempt to perform a version of the waggle dance [11] to describe

target information. These systems also require each UAV to locate targets from

communicated descriptions.

The ant model relies upon frequent simple communications to simulate a pheromone.

As such, the system for controlling foraging only requires transmitters and receivers

or another other form of similar components. This implementation is probably simple

like a coordinating radio message used to signal clustering. A sensor system may also

be able to perform the same as a coordinating radio message if it locates each of

surrounding UAVs.

Behavior Type Requirements

Clustering Coordinations signals or ‘waggle dance’ (for signalling
peers)

Schooling Sensor suite (for active cues) or broadcasting of position
/ direction (for use with signalling)

Foraging Sensor suite (to detect target cues)

Table 2.2: Sensing or Communication requirements to support specific exemplar
behaviors.

From Table (2.6), the different combination of UAV requirements is seen. For

example, a system could use a sensor suite to allow schooling and foraging while

relying upon a coordination signal for clustering behavior.

25

Bear in mind that these particular requirements are not the only ones that a

UAV system requires. Rather, these requirements are only to perform this limited set

of exemplary SO behaviors. A few other potential useful behaviors are coordinated

”flashing” like fireflies, attacking of prey in the manner of wolves, and thermoregula-

tion in bees [11] [37].

A few species of firefly demonstrate synchronous flashing behaviors. In this

particular behavior, the male fireflies cluster at a specific location like a tree. When

expressing their behavior, the male fireflies all flash at exactly the same time [11]. This

behavior is useful in designing controls for synchronizing specific actions for UAVs.

Wolves attack their prey in a SO way. That is, they move in the same direction

and create a front that attacks the prey. This particular approach to attacking prey

could be used by UAVs when they seek to destroy targets.

Bees rely upon a form of thermoregulation to prevent mass death during the

winter [38]. Basically, this form of behavior is similar to clustering in that the bees

all move towards a centralized location. However, the bees continuously shift their

position in the cluster to get warm - as bees on the outer periphery of the cluster get

colder they shift to the center for warmth.

2.7 SO Conclusion

UAV and MAV automation requires a robust, scaleable, and flexible system for

UAV behavior control. In this light, self-organization is a general system attribute in

which those very same features seem to exist [11]. For these reasons, self-organization

demonstrates potential towards design of successful UAV and MAV systems.

This definition is based upon various viewpoints as found in the literature. After

evaluating those view points, specific features from the different sources are included

into an all more encompassing definition.

Utilizing known information about biological SO systems, particular behaviors

are identified that could be used in UAV systems. After identifying those behaviors,

26

a general review of the needs for a UAV model which implements these behaviors is

completed.

27

III. UAV Background Information

UAVs are not a new concept. They have been around since the middle of the Civil

War [43] and are becoming quite indispensible in recent years [65]. Autonomous

operation of UAVs, however, greatly increases the utility in UAVs by allowing them

to function in more hands-off ways. Fully autonomous UAVs offer greater utility since

they do not require limited human attention and supervision.

A great deal of previous research has explained UAV history and develop-

ment [35] [14] [46] [53]. These works basically the evolution of distinct airframes and

their associated roles in within the US military. This information does not require

restatement.

However, there are elements of UAVs which are background information to this

investigation. This information includes the reason UAVs are being heavily developed,

the problems inherent within current UAV systems, and how those problems are being

solved or attacked.

3.1 Benefits of UAVs

In general, UAVs offer extensive benefits. These benefits are summed up by

Prieditis [65] as the dirty, dull, and dangerous missions. Each general type of mission

is related to the absence of a pilot in the aircraft.

3.1.1 Dirty. Dirty UAV missions are those in which the environment itself

is dangerous to human life. Examples of this include areas in which nuclear, biolog-

ical, or chemical weapons have been used and threaten the life of any aircraft pilots

in the vicinity. This general mission subsection can be extended to describe any en-

vironment in which there is a passive threat upon any pilots. This can range from

the aforementioned areas contaminated by radiation, chemical, or biological agents to

high earth orbit where human pilots require a pressurized cabin.

UAVs can operate where the environment is inhospitable to human life.

28

3.1.2 Dull. Being mechanical, UAVs are well suited to rote tasks. These

types of tasks are said to include performing area reconnaissance [65]. In general, dull

missions are any in which a human pilot becomes bored and therefore perform their

mission in a subpar manner. The use of a machine instead of a human pilot results

in equally well performance throughout a boring mission.

UAVs do not become bored.

3.1.3 Dangerous. One of the most straightforward types of missions in which

UAVs are of most use is dangerous missions [65]. Exemplar dangerous missions are

SEAD attacks upon dangerous ground emplacements. Additionally, UAVs are capable

of carrying equipment that is dangerous to use with a human pilot. Examples of this

are extremely high-powered radio emitters for use in SEAD missions.

3.1.4 Endurance. Though not directly addressed by dirty, dull, and dan-

gerous, another great benefit of UAVs is that they can operate with much greater

endurance. That is, the operation time of a UAV on target is not limited by human

endurance. Rather, UAV operation is limited by more mundane factors like fuel or

maintenance.

3.2 Problems

Although UAV systems offer great promise, they also have significant disadvan-

tages. These can be decomposed into three main groups:

• Operating personnel

• Cost

• Communications bandwidth consumption

3.2.1 Operating Personnel. Although UAVs do not have pilots, there can

be pilots remote controlling them. This, for the most part, means that there is a pilot

controlling each UAV. Despite not having pilots, UAVs are still piloted by humans.

29

This means that there is a direct correlation between the number of pilots that are

necessary to operate the UAVs - UAVs do not operate autonomously! Currently,

attempts to correct this problem include research into automating the UAVs. That

is, making the UAVs capable of operating without pilots.

3.2.2 Cost. Military grade UAVs are not cheap. This is due to the propri-

etary nature of UAV components [76]. One such component is high-grade sensors for

UAVs. Since there are few manufacturers of effective UAV sensors, there is monopo-

listic pricing.

3.2.3 Communication Bandwidth. A final major difficulty of UAVs is that

they require significant amounts of bandwidth to communicate. For example, when

used in Bosnia during OAF, a single Predator UAV required approximately 6 Mbps

to operate [36]. By comparison, the total peak capacity provided by the DSCS to the

allied forces during Operation Desert Storm was 68 Mbps (this was approximately

75% of all superhigh frequency communications) [36]. At this rate, a commander

cannot support a large force of UAVs.

3.3 Desired Improvements

This investigation supports the development of UAVs by developing a technique

which corrects the issues demonstrated in Section 3.2. Self-organized heterogeneous

UAV swarms, if effective, address each of these problems.

Firstly, making UAVs self-organized presumes that their operation is autonomous.

If UAVs are autonomous, they do not require pilots to control their actions.

The prohibitive cost of UAVs could be mitigated by using self-organized prin-

ciples. For example, in bees and ants [9], the more valuable colony members, the

queens and drones, are protected and preserved. If the SO system evolves an analog

to this which protects the UAVs with sophisticated sensing mechanisms like ants pro-

tect their queen, then the SO system helps alleviate the cost of UAVs via developed

30

behaviors and organization. Likewise, the SO system might develop a much simpler

UAV structure relying upon less expensive components.

By making UAVs able to function in an autonomous manner, the communica-

tions bandwidth required for each UAV could be feasibly reduced. The reduction of

bandwidth overhead likewise addresses the final UAV problem.

3.4 Approaches to UAV Automation

The attempt to ameliorate the difficulties associated with UAV deployment are

addressed by similar investigations into autonomous UAV behavior. In general, these

investigations are composed of three general mechanisms:

• How needs of the UAV are distilled into a single vector

• How each of these vectors are combined into coherent behaviors

• How the coherent behaviors are then selected

3.4.1 Vectorizing UAV Needs. This type of UAV system automation com-

ponent maps what the UAV directly knows about the other UAVs and environment

into unprioritized vectors. For example, these components determine whether a par-

ticular UAV moves closer to other UAVs or move away. These different UAV needs

are essentially the building blocks of more descriptive UAV behaviors. There are two

general ways in which the UAV needs are vectorized: direct control of velocity and

rule based directional control.

3.4.2 Direct Approaches. Direct approaches use some sort of decision mak-

ing process that directly determines the turn rate and thrust. This can range from

an evolutionary programming mechanism which directly encodes the direction and

velocity of each UAV [53] [82] to a perceptron or neural network with the outputs

tied to velocity and steering [58] [84].

31

Figure 3.1: The next velocity is determined directly by a behavior matrix or com-
ponent.

When used in an evolutionary sense, this approach seeks to evolve behavior

from scratch [84] [58]. This particular approach attempts to evolve a controller used

by the UAVs defining its own behavior without any explicit human guiding.

This approach has a significant disadvantage. Direct mapping of system inputs

to aircraft actuator settings or turnrates and velocities assumes that the evolutionary

system and method for mapping facilitates the expression and evolution of required

sophisticated behaviors. This approach often has difficulty developing useful behaviors

[84]. The reason for these failures attributable to the inability to model complex

behaviors with the mapping structure and that these systems try to evolve too many

attributes simultaneously.

This approach also presumes that the designer does not either know or assume

that the behaviors they believe are important are added to the system. The approach

here is rather that the behaviors expressed by the UAVs are emergent and not con-

strained by the programmer. However, anecdotal evidence shows that this form of

system over specializes and is unable to well handle all potential situations or stimuli.

The direct mapping approach is also addressed with unchanging systems. In a

non-evolutionary sense, the actual behaviors of UAVs are directly connected to sta-

tic and complex mathematical ideas about how UAVs behave [34, 40, 71, 77]. The

32

particular appeal of these systems is that they explicitly perform what they are pro-

grammed to do. However, with respect to SO systems, a manually created system is

very difficult to construct [13].

3.4.3 Rule Based. A different way to map inputs to the next heading and

velocity relies upon the explicit use of codified behavior rules. These rules describe

behaviors based upon certain anticipated system needs and projects a velocity and

heading for the individual. For example, Reynolds described three types of rules for

flocking behavior [66]. These rules are

• alignment with neighbors

• group cohesion

• repulsion from neighbors that are too close.

Reynolds used these rules to create flocking behavior for his boids [66].

However, behavior rules are not limited to the three described by Reynolds.

Crowther [17] espouses two additional rules: evasion and migration. In its most basic

sense, any type of rule can be created that takes in environmental information and

recombines it to generate a new velocity for the UAV.

The next major difficulty, then, combining these distinct rules. In Reynolds’

work, the rules were combined through summing them. However, the different rules

could be weighted such that they afford a different mixture of rules at different times.

For example, if UAVs were to attack, it might be worthwhile to relax the repulsion

rule so the UAVs better mass prior to the attack. This desired change in behavior

weights necessitates some sort of control mechanism.

This type of mechanism is feasibly implemented as many different structures.

Example structures are:

• Genetic programming [63]

• Perceptrons or Neural Nets [63] [58] [44] [6]

33

• Finite State Machine [47] [72]

In a sense, the rule based systems add another layer of complexity and predefined

behavior. However, they require a suitable method for combining the different rules

like the summation used by Reynolds [66]. The following equation demonstrates how

a series of weightings, w, derived from a behavior mechanism could be applied to a

set of behavior rules, R, to derive a next velocity, V .

V = ΣwiRi (3.1)

The combination of a weight determination mechanism and the weightings them-

selves along with the behavior rules results in a general structure depicted in the (3.2).

Figure 3.2: Rather than directly determining the next velocity, the behavior matrix
determines the relative importance of each behavior rule. The weighted rules are then
combined to generate a velocity.

The major difference between the rule based and the direct approach to cal-

culating next velocity is that the direct approach seeks to create emergent behavior

whereas the rule based approach seeks an optimization of behaviors presumed to be

necessary for the system. That being said, the rule-based approach seems to be far

more useful when the particular behaviors that are needed are known and can be

encoded into the system rather than elicited via an evolutionary process.

34

Another consideration is the use of sets of behavior weightings for particular

situations rather than using a behavior matrix1 1 to directly determine rule weightings

[63] [46]. This approach means that the behavior matrix, instead of directly outputting

a series of weights to be combined with the behavior rules, indicates which already

defined set of weights are used in a particular situation. This type of behavior weighted

structure is termed a behavior archetype by [63,64].

With a large number of rules and flexibility in the actual weights associated with

each behavior rule, countless behavior archetypes can be created [63]. For example,

for the UAVs to implement a searching behavior like that described in chapter 2,

the searching behavior archetype uses high weighting upon rules which create larger

spread out formations while preserving communication. In this way, the behavior

rules act as building blocks for the behavior archetypes.

Diagram (3.3) demonstrates how this extra abstraction fits into the rule-based

approach to determining UAV behavior.

Figure 3.3: The behavior matrix selects which statically defined behavior archetype
is used.

The use of behavior archetypes has three major effects upon the structure which

determines UAV next behavior: it reduces potential complexity, allows for incorpo-

1A behavior matrix is the behavior component which is used to map specific sensory inputs to
appropriate outputs. In this case, the particular behavior matrix is a genetical programming system
or genetic algorithm system that makes the determinations for utilized or selected behavior. This
term is used by Lotspeich [46].

35

ration of difficult to represent data, and simplifies the understanding of resultant

behavior.

To demonstrate the improvement in complexity, consider the use of a fully con-

nected perceptron used to directly determine the behavior rule weights. The complex-

ity in for a perceptron with n senses and r rules is nr. The complexity for a system

with b behavioral archetypes instead is nb + rb. This indicates that, for a perceptron

or neural network as in [63] and [46], the complexity when using behavior archetypes

is less as long as b < (nr)/(n + r). Additionally, non-linear relationships between

the input senses and direct behavior weights require multiple layers in systems not

implementing behavior archetypes. A comparative example is in the following table

table.

Value Normal Behav. Arch.

Senses 5 5
Rules 10 10
Behav. Arch.s n/A 3
Complexity 50 45

Table 3.1: Example comparison of single layer architecture complexities.

In addition to the decrease in representative complexity, the behavioral archetype

design also allows for the encoding of variables which cannot be controlled by a neural

network. For example, the different behavior archetypes could be associated with par-

ticular values or actions which are difficult to represent as a direct result of neural

network or perceptron calculations.

Finally, the use of behavior archetypes creates easily understood final behaviors.

Rather than behaviors only expressed as an equation, the final behaviors from a

behavior archetype system are described simply as sets of behaviors.

This approach has the benefit of reducing the complexity of the behavior-matrix.

However, it also has the disadvantage of limiting the rule values which can be ex-

pressed; the rules are not able to function in a dynamic way and must operate as a

limited number of states.

36

Different structures used to control the selection of behavior archetypes have

been attempted. These include the same general approaches used to determine rule

weightings directly.

A different investigation [63] attempted to utilize a genetic programming mech-

anism to select appropriate behavior archetypes. This approach created an equation

associated with each available behavior archetype. Sense values extracted from each

UAV’s environmental view and small double values were used as the terminal leaves

to the equations while arithmetical operators were used in the interior leaves. The

behavior archetype with the greatest result from the genetic programming equation

is selected. The performance of this method appeared to be nearly random.

The use of a perceptron or neural net to select behavior archetypes has been

investigated [63]. This particular work, inspired by that performed in [1,6,22,49], was

found to be a fairly effective method for selecting distinct behavior archetypes. This

method, relying upon only a single layered perceptron and not a neural network, does

not use a neuron activation function and cannot generate nonlinear relationships be-

tween senses and resultant behavior weights. Despite these shortcomings, this design

approach demonstrates a great deal of efficacy. In [1, 6, 22, 49], the systems effective

evolved different behaviors that addressed the particular situation need. However,

those works did not explicitly rely upon a BA architecture. A BA approach was

combined with a perceptron in [63] and demonstrated success in learning appropriate

behaviors.

Lua [47] used a generally subsumptive architecture to design their attacking

UCAVs. These vehicles have five types of layered behavior in subsumptive order:

avoid, attack, orbit a station, orbit a target, and search. These different behaviors are

essentially behavior archetypes which are combined and controlled by the subsumptive

architecture.

Another system which holds similar behaviors is that of Schlecht et all [72]. The

aerial vehicles in this investigation perform behaviors that include a specific searching

37

formation and target attack behaviors. This particular system made by Schlecht

relies upon a mechanism to decide next behavior archetypes based upon tight sensor

coupling. This appears to mean that determination of which state is appropriate is

made by specifically intended circumstances and communications passed between the

different agents.

3.4.4 Approaches Towards Specific Behavior. Reynolds work originally dealt

with the generation of swarms of boids [66]. In his work, Reynolds identified three

specific rules that can be combined to created effective flocking behavior for “boids”.

These rules address distinctly different aspects for formation stability.

The collision avoidance rule ensures that each agent does not impact another

agent. This rule influences the agents to steer away from potential impacts by main-

taining a specific distance between each other.

The velocity matching rule causes agents which are relatively close to match

their velocities. The reasoning behind this rule is that if agents move in similar

headings and speeds then they rarely, if ever, impact each other. By coupling velocity

matching and collision avoidance, the agents never impact each other.

The final Reynolds [66] rule is that of flock centering. This rule causes the agents

to move towards the center of their viewable environment. This rule is counteracted

by both of the other rules to create coherent swarm movements similar to fish schools,

bird flocks, and land-animal herds [66].

Crowther [17] identifies two more rules, likewise mentioned in section 3.5.3,

which can function alongside those defined by Reynolds [66] to generate coherent

formations: evasion and migration.

The evasion rule causes an agent to avoid occupying the “same local airspace as

[its] nearest flockmate. [17]” This rule operates like a more localized form of separation.

In this view, the results that it produces are created by the Reynolds [66] collision

avoidance rule.

38

The other rule specified by Crowther is that of migration [17]. This rule in-

fluences an agent to move towards a pre-specified point which could be outside the

agent’s locality. In this way, this rule causes agents operating in a formation to move

towards a particular location.

The behavior rules identified by Reynolds [66] and Crowther [17] can be com-

bined to create flocking type formations. however, they do not specifically deal with

searching and target engagement.

Kadrovich [35] also relies upon a variation of the Reynolds rules to allow safe

maneuvering for a UAV swarm. Rather than reliance upon three different rules,

Kadrovich combined the effects of collision avoidance and cohesion into a single rule.

In the combination, specific distances between the UAVs were selected to gauge the

specific expression of cohesion and avoidance.

Searching a specific location for targets seems to require more sophisticated

behavior than simply the five Reynolds [66] and Crowther [17] rules. An ideal example

behavior for cooperative system search is that observed in [72]. In this work simulating

a decentralized search by UAVs, there is little overlap of search locations by the

UAVs. Generally, in [72], the UAVs line up and search the space while in a line

formation. When the UAVs reach a boarder or edge of their environment, they move

to create another line formation sweep. This particular behavior relies upon an explicit

communication between the agents and a fenced in environment for coordination in

almost all organizational aspects. Despite these shortcomings, a main feature for the

systems success in [72] is its formation. The formation allows for the maintainence

of UAV communication while creating a sensor curtain to detect targets. A similar

formation could be created by using variations upon Reynolds rules [66] to both

balance the distance between the UAV agents while keeping them close enough to

maintain contact ranges. Reynold’s Rules [66] could be redesigned to take into account

threshold distances at which point they are activated. This technique is used by

Kadrovich [35] to create a preferred distance band which locks UAVs into formation.

39

Figure 3.4: UAVs repel each other if they are too close. When they are too far,
they attract each other. Otherwise, there is no effect.

This approach to formation generation requires implementations of the Reynold’s

rules [66] which take into account acceptable formation distance thresholds. These

thresholded variations of the cohesion and separation rules between agents can be

used to specify the proximities between agents for a type of formation.

Methods for attacking targets are absent in Reynolds [66], Crowther [17] Schlecht

[72], and Kadrovich [35]. However, Lua, Altenburg, and Nygard [47] address potential

attack scenarios. In this work, they describe a synchronized multi-point attack upon

a single target using local communication. Upon first encounter with a target, the

UAVs enter a small orbiting loop around the target. The UAVs then coordinate and

enter stationary jump positions at an outer loop. Once all of the UAVs occupy a

jump point, they synchronously turn towards the target and attack it in mass. Like

the formations created in [72] the UAVs rely greatly upon explicit communication

signals. Additionally, to determine jump point locations, sophisticated formula are

used. Lastly, the work in [47] does not address post attack. In fact, it seems that

this investigation assumes that all of the UAVs are destroyed when attacking the

target. Despite these disadvantages of numerous specific and explicit communication,

the intrinsic formulas for position calculation, and the assumed destruction of all

UAVs, [47] introduces a few useful behaviors for attacking. These behaviors include

a direct attack upon targets and orbiting behavior.

40

Direct attacking appears to be a variant of Reynolds flock centering [66]. The

difference used in [47] is an attraction toward targets instead of cooperating UAVs.

One thing is clear about this particular behavior as observer in [63] is that a behavior

rule to attack targets must also consider situations in which two or more targets are

known by a target. In the two-target situation, attraction towards the center of the

two targets may place the UAV outside of an attack range with the any of the targets.

In this case, a target-centering rule is actually detrimental towards a UAV SO system.

To correct this problem, there must be a weighting associated with the distance of a

UAV from a target. This weighting places a higher attractiveness for targets that are

closer instead of equal attraction for all known targets.

A target orbiting behavior [47] allows UAVs to stay in loitering positions outside

of danger while waiting for an opportune time to attack the target [63]. This behavior

allows the UAV agents greater time to coordinate before risking an attack.

3.4.5 UAV Senses. UAVs require distinguishing features between states to

determine how they move. These features are seen as UAV senses. UAVs utilize a

series of sensor values distilled from their local representation of the environment as

input to their movement logic. These senses contain information which is useful in

deciding when and in what value each of the behavioral rules are applied. Additionally,

the senses facilitate cooperative action. For example, the senses aid the UAVs in

determining when to perform the major behaviors. Additionally, the senses allow

coordinated attacks and searching behaviors. Likewise, the senses allow the UAVs

appropriate information to determine their own behaviors. Potential sensory values

for each UAV include but are not limited to:

• Density of other known UAVs

• Proximity to environment obstacles or boundaries [58]

• Density of targets

• Whether enemy attacks are observed [38]

41

• Density of different types of UAVs

• Behaviors selected last time by the same UAV

• Entity sensing using directionality and shadowing [35] [46]

• UAV damage

• Density of each behavior being used by known UAVs

• Coordinating signals between UAVs [47] [72]

• Pheromone-like signals [60]

• when enemies are spotted [38]

A UAV density sense could be used by a UAV to determine the UAV crowding

in its known environment. This sense has utility as a deciding factor for when UAVs

spread out or come closer. This sense or another which can perform the same behavior

is a clear necessity.

Likewise, a sensor that indicates the proximity to the environment obstacles

may be useful to prevent UAVs from impacting them. However, necessarily knowing

the UAV’s distance to the said obstacles might not be an essential sense because a

behavior rule encoding obstacle avoidance could be set to operate and only function

when the UAV is a particular distance from the obstacle. The usefulness of this sense

could be replaced by a well designed rule.

Density of targets, at first glance, appears to be a useful sense. However, it may

not be as important as first thought. A sense indicating the presence of targets is

quite essential. But knowing the density of targets does not serve to coordinate UAVs

for cooperative attack unless the UAVs are consistently within the same formation.

The density of known targets serve as a primer for behavior selection. Other methods

or senses seem better geared towards the use of coordinating UAVs to attack. An

example of this is the use of certain pheromone like signals [63]. This type of sense is

discussed later.

42

Kleeman indicated that it is useful for UAVs to know when enemy targets

are observed [38]. Within the assumptions made by this investigation, there is no

difference between a target that has not acted aggressively and one that has. For this

reason, a sense encoding whether enemies have attacked is of low importance.

A variation upon the density of all UAVs is the density of individual types of

UAVs. This particular sense is not necessary to indicate when UAVs spread out as

that is already be indicated by the all-UAV density sense. It seems that there are

ways to encode this type of information to the UAVs without such a sense.

The idea of using the previous selected behaviors as feedback into the currently

selected behaviors is a very good idea. In fact, this particular sense supports the idea

of feedback loops presented by SO. This type of sense is of high importance.

Other UAV and robotic systems have utilized senses which incorporate direc-

tionality [6] [49] and shadowing [35] [46] of important environmental objects. These

types of senses are used generally to tie a lower-level idea of motion to a lower-level

representation of the environment. What is meant by this is the outputs generally

provided for agents utilizing senses like these are often directly linked to simpler be-

haviors than the behavior rules described [6] [49] [22] [24]. The apparent reasoning

for linking sensing systems which know the direction and approximate distance for

items of interest and simpler behaviors is that the distance and direction encoded by

the senses translate into effective behavior rules within the connection between the

senses and simple actions. Basically, since the senses incorporate the direction and

distance of items of interest, the simpler actions can take advantage of that informa-

tion. Complex behaviors are expected to be evolved from a system.

With regard to systems using behavior rules, the relative directions and dis-

tances are already encoded into the behavior rules themselves. The need for senses

representative of explicit directions and distances are not as essential since the behav-

ior rules already address the specific details.

43

Incorporation of UAV damage sensors may be a useful sense. This sense could

be used to allow UAVs to select behaviors and next states which better realize UAV

capability when they are damaged.

Coordinating signals, like that used by [47, 72] appear to be very complex in

nature. They communicate specific information like the next location for a specific

orbit or commands to other vehicles. As such, they are too detailed to support a

successful BA architecture.

Pheromone-like signals are very difficult to engineer into a strictly airborne

system. However, their usefulness has been tested [60] and shows promise. The

problem with such a signal is that pheromones tend to require sampling along a

series of points and the UAVs are not necessarily at those points. As a simulation,

this technique performs quite well. But in practice, the use of a pheromone in its

classical representation requires extra resources like ground based pheromone nodes

[60]. Pheromone senses, however, are highly used in many existing SO models and

are considered. In fact, this particular approach has been combined with a target

detection sense in [63,64] to coordinate between multiple behaviors.

3.4.6 Exemplar System Models. Three descriptive system math models are

available. These models were created by Lotspeich [46], Kadrovich [35], Milam [53],

and other important model that are referencially less grounded are those by Schlecht

[72], Lua [47], and Parker [58]. In addition, some tertiary models are briefly discussed.

3.4.6.1 Kadrovich Model. This model was created mainly to study

communication and formation stability aspects of UAVs to support its operation as

a flying ad hoc network [35]. Even control issues with UAVs are ignored.

The UAVs, as a whole, have two major behavior rules: alignment and attraction.

These two rule encompass the three flocking rules established by Reynolds [66]. There

are a few differences in the implementation here, however. Kadrovich relies upon 4

distinct types of distances between UAVs. These distances have a great effect in that

44

if two UAVs are within the too close distance, then the attraction rule attempts to

separate the UAVs.

Kadrovich also introduces the use of a sensor shadow created by neighboring

UAVs. Simply put, closer neighbors to a specific UAV shadow or block the detection of

other further UAVs if their bearing relative to the close UAV is smaller than a specific

angle. In [35], this sensor shadow was set at 30 degrees. In this way, the system tended

to enter into hexagonal formations to maximize neighbors and formation stability.

In addition to the behavior rules, the UAVs in the Kadrovich model also place

more importance on other UAVs that are in front rather than to the sides. This

peripheral vision weighting by Kadrovich was added to increase fidelity.

3.4.6.2 Lotspeich Model. This model [46], was created by Lotspeich

to investigate the control of UAVs. As such, it has more pertinent information to

the control and behavior of UAVs specifically when complex communications systems

are ignored. Lotspeich implemented behavioral rules which encompass cohesion, sep-

aration, threat avoidance, and goal seeking. These behaviors are then combined by

summation of the rules multiplied by some weighting factor. The weighting factors

were determined through an evolutionary strategy.

The behavioral rules are based upon “potential field” calculations. The imple-

mented control model for the UAVs is first-order and therefore offers greater simula-

tion control fidelity than that offered by Kadrovich. Like Kadrovich [35], Lotspeich

implements a weighted peripheral vision mechanism.

With regard to threat detection, the threats are the related to radar detecting

the UAVs. These equations are made with the assumption that the radar site is

monostatic.

This investigation successfully evolved behavior dealing with the issue of an

unknown number of targets in an unknown area.

45

3.4.6.3 Milam Model. This model [53], was created by Milam to also

investigate the control and behavior of UAVs in an environment. The major differ-

ence between this investigation and others like it is that this work used a genetic

programming model. This model does not implement a sophisticated control simulat-

ing system like that in Lotspeich [46]. However, it does rely upon a direct approach to

UAV control. That is, the output from the genetic programming component specifi-

cally states what actions are taken to change the UAV velocity.

Despite the comparative simplicity of outputs, the inputs to the GP module are

not as simple. The system relies upon senses, encoded as terminals to the GP trees,

which include values like UAV’s current velocity and the average velocity of all UAVs.

The purpose of this model was to train a swarm of UAVs to travel in a 3

dimensional space between known targets. At this, the Milam model succeeds.

3.4.6.4 Schlecht Model. This model was designed to offer a form

of behavior that optimizes the searching of a two dimensional space by intelligent

munitions. In this work, the intelligent munitions perform sweeps of the searching

area by lining up at a side, synchronously and, in a parallel formation, search the area

while traveling towards the opposite side. If the intelligent munitions locate a target

while performing their sweep, they determine whether the target is important enough

to immediately attack. If not, the relative value of each target and assign themselves

to attack those targets upon the completion of the area search.

The model is a hard coded control system. It does not appear to rely upon any

form of evolution to optimize the control model. Likewise, the munition velocities are

limited to slow, cruise, and pursuit. Additionally, communication reception ranges

is often limited to the nearest neighbors. Schlecht claims that the success of this

system validates that simple communication and behavior can be combined to create

a scalable and flexible system architecture for intelligent munition systems [72].

46

3.4.6.5 Lua Model. The Lua model demonstrates very sophisticated

target attacking behaviors. It relies upon complex attack patterns. Like the work

performed by Schlecht [72], this investigation assumes that attacks performed by the

UAVs are terminal and that the UAVs function as intelligent munitions. Additionally,

the control mechanism is based upon a subsumption architecture and has not been

optimized through an evolutionary process.

For use as an attacking model, this work demonstrates quite a few exceptional

traits. When attacking, the UAV system relies upon two distinct orbiting patterns

around the located target. The first and closer of the two orbits is used by the UAVs

to coordinate a collective move to the outer orbit. Another difference between both of

these orbit other than the simple distance from the target is that, when in the outer

orbit, the UAVs attempt to stay in a holding pattern by circling in place along the

orbit. This is another coordinating step for the UAVs. After the UAVs all enter the

outer loop, they simultaneously attack the target in mass.

This system, however, relies upon strongly tied connections between the inputs

and the outputs between the UAVs. This strong coupling may not function correctly

in the real world where communications are susceptible to noise and enemy retaliation.

Despite these drawback, the Lua model suggest specific useful behavior for UAVs when

attacking a target.

3.4.6.6 Tertiary models. Saber [71] uses a graph theoretic framework

to describe swarm flocking. In this work, three different types of agents are used to

influence the swarm behavior in obstacle avoidance. Basically put, his algorithms

cause the UAVs to enter into extremely stable formations. This influence on stable

formations is very similar to the sensor shadowing introduced by Kadrovich [35] and

provides for group joining and splitting.

Ko’s work [40], dealt mainly with the allocation of search and pursuit area

within the environment. In effect, the algorithm for environment division is quite

novel- as new UAVs join the network, the environment is divided amongst the UAV

47

in the area in which the new UAV joins. This division technique is used to guide

individual searches by the UAVs.

Sujit and Ghose [77] also implement a specially designed search algorithm. Their

algorithm is based upon an agent negotiation scheme to assign individual search routes

in the environment to UAVs. Though their work appears quite unique, it also seems to

suffer from complex communication protocols between the agents and limited fidelity

in environment representation.

Jin [34] uses a cellular environment representation and allows the UAVs to

cooperatively move about the environment. The UAVs in this work appear very

simply modeled though they execute multiple types of behavior accordingly. This

simulation seems to assume a great deal of communication between the agents or

stigmergy [9].

3.5 Summary

Behavioral approaches made by multi-UAV systems operate in a variety of ar-

chitecture. They rely upon very specific information taken from their environment

to decide upon their next behavior [53,58,59,82,84]. Other approaches utilize higher

level determinations about the environment to select their behavior [46,47,57,63,72].

The exact nature of the behavior selected could be a direct encoding to actua-

tors as in [1, 6, 49, 53] or more rule based approaches to next state as addressed

in [14,16,35,63,66]. In any event, these different design choices afford UAV behavior

models the ability to address different situations.

By better automating UAVs, these vehicles are able to operate with reductions

in their personnel requirements, potentially inefficient use of costly and essential com-

ponents, and communications bandwidth.

48

IV. High Level SO Model

A UAV and simulation mathematical model in this investigation is based upon

three concepts:

• A Self-Organization Framework

• A UAV Framework

• A simulation framework

This chapter describes the necessary frameworks and illustrates the reasoning

behind the design decisions. Section 4.1 describes, in a bottom-up fashion, the design

of a SO framework. The following, Section 4.2, constructs the UAV and environment

models for this investigation. The design for the genetic algorithm is presented in

Section 4.3. The final section, 4.4, describes the design of the simulator and its

accompanying systems.

4.1 Bottom-up SO Framework Model

In relating to the background on SO presented in Chapter 2, the SO algebraic

model used by this system is designed in a bottom-up fashion. Self-organization is

the combination of what things are done by what type of actor or agent. It is under

these auspices that a bottom up approach to designing a SO system math model can

be taken. This provides a foundation for expansion into other components that make

up a SO system and, eventually, a defining tuple representative of SO systems.

State. This first component, which must clearly exist, is macro or global state.

For this reason, state is defined.

Definition 1: Macro State This component of a global view of SO systems

comprises visible attributes of the particular SO system’s current instantiation. Macro

State represents the dynamic features of a particular SO system directly relating to at-

49

tributes observable from a perspective external to the agents and their decision making

processes.1 It is defined as the variable sM .

For example, in an ant or bee colony [11], macro state represents the combined

total position of all ants or bees and what they are doing. Another example is the self-

organized network of sensors described by Collier and Taylor [13]. In [13], the sensors

communicate on many different frequencies without overlapping. In the scenario

presented by [13], the specific state, sM is the communications being sent out by each

node and their specific frequency.

This is all well and good, but, in the real world, states change. This means that

the state of a self-organized system must change as well. These changes are described

as transitions between one state to another [31]. The possibility and potential for

change requires the introduction of two more elements- the limitations of all possible

macro states and a transition between states.

Since it is possible for states to change, the ranges in which states can change

must also be defined. Without the specification of these state dimension limitations

state could be anything from the reasonable and banal to the purely absurd. For

example, without specified limitations for states it is possible for an ant colony state

describing individual agent positions and activities to transition to a state in which

the ants perform a glowing rendition of the musical Cats. The point is that without

a proper definition of possible states, a system could do anything [31]. To prevent

undesireable states, the idea of a state space specifying all valid states is defined.

Definition 2: Macro State Space this component of a SO system provides

all of the valid macro states for a particular system. All valid macro states for a

particular system exist within the macro state space. A variable that represents the

macro state space is SM,s. The relationship between macro states, sM and the macro

1The issue of observability deals directly with components of state. Macro state is not concerned
with agent-state.

50

state space is demonstrated by the following equation.

sM ∈ SM,s (4.1)

4.1.1 Environment. Returning to the state change function, SO systems do

not necessarily rely solely upon the previous macro state to transition to future states.

Rather, The system does not operate in a vacuum - contributions of the environment

are not ignored [13]. For this reason, the environment is considered a contributing

factor to the state transition. However, where an environment consists of a series of

entities, this SO model represents it as a set of effectors.

Definition 3: Set of Effectors The set of effectors includes all effects external

to the system macro state. These effects are collectively represented by the variable

e. In this regard, effector sets store all possible effects and relevant simulation infor-

mation external to the actual SO system. In this way, the environment is modeled in

Equation (4.2).

e = (effector1, effector2, ..., effectorn) (4.2)

Examples of an effector set with respect to SO systems are varied. In ants [11],

the effector set consists of all things influencing the space in which the ants move

except the ants themselves. The effector set plays a key role for ants by holding the

pheromones the ants use for stigmergy [11]. With regard to a sensor network [13], the

effector set similarly is the medium in which the sensor in which communication can

take place.

In much the same way that the SO system state transitions, as modeled by the

function ρ, effector sets can also change in this progression. Modeling effector set

changes alongside SO system state transitions requires some function associated with

effector set transitions. For this purpose, the variable ξ is used.

51

4.1.2 Macro State Transition Function. Since the SO system does not

transition to new states in an environmental vacuum [31], the environment is included

as the effector set in system state transitions. However, the ways the effector set

influence the next SO system state can be both implicit and explicit.

Implicit influences upon the SO system include such factors as environmental

cues and stigmeric effects [11]. This weighs heavily into the actual updates of system

state. An illustrative example for this is the way in which ant pheromonal signals

contribute to the next state selected by ant [11] [9]. Ants rely upon the environment

to encode the actual strengths of pheromones to determine the next direction and

position that ants take. In this way, the environment acts as an implicit component

to the ant organization - the environment does not perform an action to influence the

ants’ next state. Rather, the environment effects the next state for the ants in an

implicit and passive way.

Explicit environmental influence upon the next system state includes things the

environment does. Actions performed by the environment which directly affect the

system state are considered explicit. An example of this relating to ants is an anteater

attacking the ant colony. Clearly, the anteater is directly affecting the next state of

the ants as it kills off the colony. The possibility for environment directly affecting

next system state suggests the need to incorporate another term into the way the

system state transitions to other states.

Since the environment is represented as a set of effectors with regard to the

SO system, the distinct influences are simply modeled as different forms of effectors.

Both of these environmental influences are easily incorporated into the system update

by requiring effector sets be incorporated into the system state transition function,

ρ. The next state of a SO system relying upon only the systems previous state and

effector set properties can be thusly modeled

The system state can change in the presence of the previous system state as

well as effector set influence. These changes can be tracked in a Markov chain [54]

52

and delineated by the state progression counter k.

ρ : SM,k × ek → SM,k+1 (4.3)

The assumption that the macro-state can be changed allows for dynamic mod-

eling. That is, since the macro-state can be changed, a SO system operating with

this algebraic representation must be capable of similar modifications. The first four

definitions provide for the the existence of both macro-system state and environment

state as well as the feasible values they can maintain. Projection 1, on the other hand,

suggests that these different states can change and provide the necessary assumption

for an implementing system to change.

4.1.3 Markov Chain. The process that updates the effector set and the

system macro state cannot be deterministically reversed to derive predecessor macro

states [31]. Heylighen states that this irreversibility of state is due to the energy

dissipative nature of the SO system. Basically put, SO systems tend to dissipate

information and complexity. Because this dissipation is one way and not completely

predictable, the causes of SO system transitions cannot be easily inferred from ap-

parent system responses.

However, Heylighen goes on further to explain that SO system state transitions

can be modeled as Markov chains and therefore successor states can be probabilisti-

cally predicted. Through the use of the Markov assumption, it is possible to predict

the next state based solely upon previous states [28]. An equation modeling the prob-

abilistic chain between macro-states according to the Markov chain model follows:

P (sM,k+1) = P (sM,k+1|ek, sM,k)P (sM,k) (4.4)

This Markov chain approach probabilistically links system expression of macro-

states. However, it is important to realize that this Markov chain model deals respec-

53

tively with macro behavior and not that at lower-levels2. True, all but one next state

could be very improbable, however, those others states are possible.

The apparent closure of SO system macro state [31] is properly modeled within

the Markov chain model [28]. The closure is dealt with by the notion of absorbing

Markov chains [28]. These particular forms of Markov chains have particular states

or sets of states which grow in expression over multiple transitions. This increase

macro-state prediction as modeled by the absorbing Markov chain model demonstrates

behavior similar to the attractor states described by [31]. In fact, Markov chains can

express both positive and negative feedback [11] [31] behavior through absorbtion [28].

Another concern to the system update described in projections 1 in section

4.1.4 and 2 in section 4.1.5 is the necessarily first-order nature of transition changes

in the system and effector set with a Markov chain [28]. These particular update

definitions only rely upon the previous state to predict the next state. It seems that

previous states other than the current one could be used to determine the next state.

This particular approach is similar to multi-ordered approaches to modeling other

systems. For example, in Newtonian physics, the position of an object at a time

can be modeled by using velocity, acceleration, and jerk components [42]. These

components can be determined from the previous history points of the system. In

a basic sense, increases in the modeling order can be made by incorporating more

history points into computation for the next position. Modeling newtonian motion at

higher orders increases the modeling accuracy. Seemingly, by using greater history in

the state and effector set updates greater accuracy in modeling could be achieved.

However, with regard to the macro-state being representable by a Markov chain

[28] [31], only the previous behavior is necessary to predict the next behavior. The

use of more previous states to predict the next state could be used at a lower level to

2Lower-level behavior is described the the agent or micro state. Predicting macro-state behaviors
does not incorporate all of the information available to the micro system agents and is therefore
probabilistic without the requisite suitable information. This relationship between macro-state and
micro-state is described with the micro system agents.

54

generate the next behavior. In this way, levels existing below the macro level could

implement non-Markov decision processes to determine next state.

It is important to realize, at this point, that the mapping between states at

the macro-level is unreliable [31] and necessarily probabilistic. It is this difficulty

in understanding the mapping between macro-level states to their successors which

makes creation of a SO system difficult. This suggests the need to perform more

reliable simulation at a lower level. By performing the transitions at a micro-level, it

is possible to sidestep much of the difficulty in creating SO systems. However, it is

also difficult to predict how interactions at the micro-level affect the macro-state [11].

In this case, reliable simulation could be performed at the micro-level of a SO system

and and translated to macro-state to evaluate the system wide performance.

Mention of the existence of state below the macro level implies the existence

of such a level. This level is composed of the many agents that interact to create a

SO system [11] [13] [31] [74]. And, the lower-level state, or micro-state, is the state

implemented by the lower-level agents comprising the system.

4.1.4 Agents. SO systems are composed of smaller components that interact

to produce an emergent global behavior. These independent agents also exhibit their

own micro-state. The existence of this micro-state is defined.

Definition 3: Agent Micro-State the agents, direct entities of the SO system,

have their own individual states. The micro-state includes all attributes used by the

agent to derive future behaviors. An independent micro-state for a single agent within

the SO system is represented as the variable sI . The relationship between the micro-

state and the macro-state can be expressed by the following equations.

It is important to realize that there is a correspondence between distinct micro-

states and a SO macro-state. This correspondence is best demonstrated with the ant

colony example. The individual ants exist as individual agents within the entire SO

ant colony. The macro-state, in this example, corresponds to the information which

an observer can glean when watching the ant colony function and its environment.

55

The micro-state, however, includes more distinct information relative to each ant like

its current task.

Unlike the macro-state, there is no need to define a micro-state space. Each

valid micro-state must correspond to at least one macro-state. Since the macro-states

correspond to a defined state space, the micro-states are similarly confined. However,

all information within a micro-state does not necessarily correspond to information

with a macro-state. This information, basically the is used by an agent to determine

its next behavior. For example, the apparent behavior of ants in a colony are based on

observation instead of exact understanding in ant decision processes [9]. Additionally,

the exact reasoning a bird uses to select its position within a flock is not completely

understood [11]. Rather, the models and approaches used to model their behavior is

based on observation rather than an exact knowledge about the system agents. It is

this distinction which is modeled by separating the micro-state from the macro-state.

Given the definition of micro-state, the components executing the micro-states

are also described. These components are the agents which make up the SO system.

These components which are described by the variable a.

Definition 4: Agents the agents are the directly observable entities of an SO

system. The actual SO macro-level is a virtual construct comprised of information

from these smaller agents’ state. Each of the smaller agents has an associated micro-

state which it executes in the same manner that the SO system can change its macro-

state. The following equations help to relate how the agents fit into the system. If

a micro-state is associated with a particular agent, it is noted via the exponent. For

example, sa
I is the micro state of agent a.

With regard to the agent’s themselves, they contain more information than a

micro-state. For example, real ants have what they ar currently doing, the ways

in which they interact with the world and themselves, and observations about their

world. Taking this into account, it is possible to refine the specification of agents to

56

include this. In this way, a functional tuple describing an agent can be constructed.

This agent tuple is demonstrated in Equation (4.5).

a = (sa
I , δa, Oa, SI,s) (4.5)

sa
I ∈ SI,s (4.6)

Oa,k ∈ {ek ∪ αk − a} (4.7)

In Equation (4.5), the particular agent is represented by a and its state is

represented by sa
I . Additionally, agents have a function used to modify their own

state, δ. The operation of this function is in later definitions. The agents also have

a set of observations, O, from other agents and the set of effectors. The observations

are effectively a subset of the union of all other currently existing agents and the

effector set as demonstrated by Equation (4.7). The final attribute that agents have

is a finite set of states that agents can execute, SI,s. This set describes all states that

this agent can enter and is described in Equation (4.6).

The attributes for an agent as described in Equation (4.5) suggest agents have

various dimensions in which they can operate. These dimensions can be formalized

into an agent space definition, As. With regard to Equation (4.7), Ak is a subset of

the agent space at stage k.

With the use of agents, system changes are more easily performed through

micro-state changes rather than at the macro-level. These micro changes are the

precipitating cause for new macro-state. This view provides better modeling for a SO

system than achievable by the macro-level with the state transition function, ρ. The

transition between macro-states relies upon solely the macro-state and the effector

set. However, macro-state transitions are actual performed by transitions at the

micro-level executed by an agent. For this reason, the actual changes rely upon the

micro-states. In this light, the effective system state transition necessitates change.

57

There are two ways in which the combined states of the agents are updated:

asynchronously and synchronously [48]. Asynchronous updates to the result from

changes performed to a single agent in the system at a particular state progression.

Synchronous updates represent the simultaneous changes of all agents within a system.

The exact intent of these updates is clear. Modeling them in this SO algebraic design,

however, requires adding the notion of an agent subset to the state progression based

model. Coupling the macro state and effector set into a tuple has already been

addressed and shown to be necessary. This dynamic representation of a SO system

is increased to incorporate an agent set into the model. The agent set incorporates

agents with micro-states that can be changed or modified to change the derivable

system macro-state. Since the macro-state is constructed from the different agent

micro-states, the tuple is changed to only contain an agent subset and an effector set.

Definition 5: Dynamic SO System State This representation is a particular

SO system implementation at a particular state in a progression of states. It contains a

set of agents and an effector set. In general, a dynamic SO system state is represented

by the variable σ at stage k.

σk , (Ak, ek) (4.8)

The dynamic system state representation is essentially composed of two parts:

Ak and ek. In this case, Ak is simply the set of all valid agents within the system at

that particularly expressed macro state. Additionally, Ek is the current effector set.

This definition of a dynamic instantiation does not preserve the correlation between

the macro-state and the micro state for a dynamic system. Mapping the specific

features existing within a dynamic system state to an observable system macro-state

is still a necessary to demonstrate correlation between macro and dynamic SO system

states. This mapping between the dynamic state representation, which operates upon

the micro-level, to macro-state is defined below.

Definition 6: Mapping between Dynamic System State to Macro-

State This function provides a way to convert the dynamic representation state to

58

a particular SO system macro-state. It maps the micro-system to the observable

macro-system. As such, it provides a one-way translation - there are potentially many

dynamic representation states that are mapped to each macro-state. This mapping

function is denoted as τ .

τ : ∀a∈Ak
sa

I + ek + θ → sM,k (4.9)

The distinct dynamic system states are also subject to a limit space for feasible

instantiations. This space is constructed by the both agent spaces and the effector

set. However, there is extra information which is required to map to a macro-state.

This information is denoted in Equation (4.9) as θ.

This particular function provides the only way to map the operation of the dy-

namic SO system which focusing upon the micro-level to macro-states. This operation

is one way. That is to say, there is no way to convert a macro-state into a fully fledged

SO dynamic state - the macro-states simply do not have all information available at

the micro-level.

Definition 7: Dynamic System State Space The dimensions of feasible

dynamic system state, σs, are limited by feasible agent space, As, and effector set

space, Es. The number of distinct dynamic system states are either equivalent or

greater than the macro-state space cardinality. This is due to the relative amount of

information existing within the dynamic system state as opposed to the macro-state.

σs , As × Es (4.10)

Viewing a SO system at the micro level reveals that changes to the system macro

level and effector set are actual precipitated by changes at the agent micro-level; micro-

level changes influence the global system expression. And these changes respond

to effects within the effector set. Incorporating the effector set in the agent-level

state update functions introduces another problem: according to the SO definition

59

features, an agent operates within the limits of a locality rather than the global world.

This imparts a constraint to the inclusion of the environment into the agent-level

state update functions that the representative environment must be defined by the

agent locality. This requirement is very logical; for example, ants base their actions

and determination of next state upon the subsection of their environment that they

see [9] instead of global knowledge. For this reason, a function which determines the

subsection of the environment a particular agent can view is defined.

Definition 8: Agent Locality Filter This function uses the information

encoded within an agent to determine what elements of the effector set and other

agents can be observed. It requires the agent in question and the particular dynamic

SO state representation as input. The agent locality filter is represented by the

variable, g.

g : a× σk → Oa,k (4.11)

This equation, coupled with Equation (4.7), demonstrates the operation of the

locality filter. Simply put, it selects the elements within the dynamic system state

that an agent can observe and coalesces that into the agent’s set of observations. For

example, in use for a SO UAV system, this function is used to determine what each

UAV can sense from the environment.

Now that the notion of agent locality can be determined by each agent, the

actual operation of the agent-level update function is defined.

For an agent to change its own state, two things must be available: access to

the agent itself and the information about the agent’s locality. The need for the

agent being included within the self-change function allows the agent to have input

to the process. Additionally, the environment is a necessary component since it has

an impact.

60

Definition 9: Agent Self-Change Function This type of agent-level change

function allows an agent to determine its next appropriate state based upon the

environment and the agent itself. This function is represented by δ.

δ : s′I,k
a ×Oa → s′I,k+1

a (4.12)

This equation simply demonstrates how δ can be used to generate the an agent’s

likely next state.

The second type of agent-level update function is agents changing the state

or observations of other agents. This type of function is seen as a form of explicit

communication that does not travel through or is modeled within the environment.

An example of this is how blind army ants, while foraging, communicate by touch as

well as pheromones [11]. These touches between ants serve to help orient the ants

without actually changing their environment.

This process relies upon the already defined state progression component. A

function identifying application of an iterative update simplifies the process for the

SO system operation. As identified by [48] relating to cellular automata, there are

two different mechanisms with which a model can be updated: synchronously and

asynchronously. In synchronous updates, the entire system updates simultaneously

whereas asynchronous updates support staggered updates.

σk+1 = ∆(σk), k ≥ 0 (4.13)

Differences between synchronous and asynchronous updating [48] falls within

the implementation of ∆:

Definition 10: Synchronous and Asynchronous system updating A

synchronous SO system allows all agents within its system to update at the same

time whereas the asynchronous does not force each agent to update at the same

time [48]. These different forms of updating, follow the type of implementation. The

61

variable ∆ represents a SO system update. In this way, the system updating function

∆ utilizes the functions δ and τ to update the system.

Recall that σk = (Ak, ek),

Synchronous These systems update entirely at an iterative process. In this

fashion, the entire system is updated simultaneously.

For the first agent:

∀a∈α

Oa = g(a, σk)

sa
I
′ = δ(sa

I , Oa)

And the macro-state is updated: S ′M,k = τ(Ak, ek, θk)

Asynchronous this contrasts with the update process supported by the synchro-

nous system in that only a single agent at a time updates the system.

For the selected agent:

∃a∈α

Oa = g(a, σk)

sa
I
′ = δ(sa

I , Oa)

Followed by the macro-state update: S ′M,k = τ(Ak, ek, θk)

After the application of the system update, ∆ returns the changed states for

the UAVs such that

σk+1 , ∆(σk)) (4.14)

The above symbolic math system provides for the system operating and moving

between states. However, there is no function contained within the definition tuple

which grounds the initial system condition for the environment and the agents. The

instantiation of the system for A and e at k = 0, or the original state, is left for the

62

particular implementation of this model but can weigh heavily into the results of the

system operation. This original state is denoted as σ0. Altogether, the definitions

provided can be combined into a SO system tuple.

Definition 11: SO System Tuple This tuple provides for the different at-

tributes that provide for accurate simulation. This tuple also provides the mapping

between the more accurate micro-level and the observable macro-level

SO , (σs, σ0, g, ∆, τ) (4.15)

The components to the SO system static tuple constitute the effective dynamic

space, σs; an initial dynamic state σ0; the locality constraint, g; system update func-

tion, δ; and the function mapping dynamic state to macro-state, τ .

The general operation of the algebraic system created to model SO systems

is graphically demonstrated in Figure (4.1). This figure demonstrates the general

mapping between the macro and micro levels with regard the the system operation.

When examined as a whole, this definition of SO systems has characteristics

similar to finite state machines [19]. In [19] finite state machines are defined as a six

tuple of (Q,S,R, f, g, qI) where Q is the set of internal states, S is the input alphabet,

R is the finite output alphabet, f maps states and inputs to next states, g maps output

alphabet elements from the state and inputs, and qI is the initial state. With regard

to the SO tuple, σs and Q provide a framework of feasible system states. Additionally,

σ0 and qI provide a starting state for the system to operate. The SO tuple is distinct

from the finite state machine tuple since it does not include either an input or output

alphabet. However, the interaction between the agents and environment within each

state is analogous to the input and output alphabets. Although there is no finite

state machine analogue to the locality constraint within the SO tuple, g operates in

conjunction with δ to transition the dynamic states. Finally, functions m within the

SO tuple and g within the finite state machine tuple perform output mappings.

63

Figure 4.1: This is a graphical representation of the first three steps of a SO system
operation.

4.2 High-Level UAV and Environment Models

In much the same way that developing a SO system requires a mathematical

definition, creation of a robust UAV system requires similar definitions. However,

unlike the development of the SO model, the UAV and environmental models rely

upon the SO model as a specification framework. In this manner, creation of a self-

organized UAV system is more grounded and organized.

The features that must be defined from the SO definition include mainly the

agents and the environment. Returning to the capabilities for self-organization pro-

vided by the SO model reveal that the specific system implementation of the SO

model must particularly address two key details: ensuring that the agents interact

with each other and affect their environment and that the agents themselves do not

implement a decision-making scheme utilizing mechanisms like recipes or blueprints.

64

A reasonable starting point for this definition process is grounding the model

environment space, Es.

4.2.1 Environment. The environment is the general space in which the

system operates. Since the SO macro-system is built upon UAVs, the environment is

representative of a physical space containing all system elements including the agents

themselves. In this regard, the environment can be quite complex. This complexity

includes such features as

• Physical space dimensionality,

• Granularity,

• Targets,

• ground terrain,

• environmental factors like wind and cloud visibility,

• electromagnetic spectra for communication and sensing purposes,

• virtual communication for use as data passing areas,

• obstacles such as no-fly zones

The combination of these different aspects defines the environment as an immense

space. However, to operate in a comparable way with other UAV systems, a certain

level of environmental fidelity can be gleaned from other investigations.

Table (4.1) illustrates particular references dealing with UAV simulations and

their implemented features.

Observation from other investigation approaches suggest the fidelity which is

implemented in a suitable and comparable simulation environment.

The environment is implemented in only 2 dimensions. This fidelity constraint

was selected to provide for suitable accuracy and comparability to other simulations

without imposing potentially extraneous simulation computation. Additionally, it

allows for unconstrained motion by the UAVs. The UAVs are not constrained to

65

Table 4.1: Listing of representative simulations and
their various attributes

Ref Sim
Dim

Gran Targets Terrain Weather E. Spec-
tra

Comm

[47] 2 Free Yes
[72] 2 Free Yes
[26] 3 Free Yes Pheromone
[3] 2 Free Yes Simple

Radio
[55] 2 Free Yes
[82] 2 Free
[7] 2 Free Allies
[71] [70] 2 Free Obstacles
[62] Hex-

Based
Many Pheromone

[52] 2 Free
[8] Fixed

grid-
lines

Obstacles

[14] 2 Free Ad-Hoc
Net-
work

[35] 2 Free Ad-Hoc
Net-
work

[53] 3 Free Yes Obstacles Yes
[46] 2 Free Yes Threat

66

travel along edges between grid points in the environment [8]. Free motion of UAVs

in the 2 dimensions is implemented to allow more realistic results than simply a grid

or hex based system. Thusly, the environment does not implement a hex [62] or other

geographic-breakdown for UAV location. Instead, the UAVs have the capability to

travel to any point within the space [3, 7, 14, 26, 35, 46, 47, 52, 53, 55, 69, 71, 72, 82].

With respect to actual measured accuracy, that is a question left for scenario system

implementation.

The environment implements the use of targets with capabilities similar to those

of the UAVs. This was selected to allow for greater testing of simulation behaviors.

Specifically, the targets are capable of retaliation against the UAVs. This feature was

selected since it provides extra testing of the SO behavior flexibility- since UAVs can

be destroyed, the UAV behaviors must be able to account for potential attrition.

Terrain is not implemented. This is due to the assumption that the UAVs are

operating sufficiently high-above the ground that terrain does not mask movement.

However, obstacles such as no-fly zones are incorporated. These obstacles are essen-

tially polygonal and, despite the UAV’s high altitude, impassible.

Since weather effects are not generally a simulation consideration, they are not

included. This feature is not incorporated in the system since it also represents

potential extra calculation.

Additionally, from the simulations reviewed in Table (4.1), communication

mechanisms do not appear to frequently use the environment. This is due to a few

issues. Environmental communication similar to stigmergy [11] relies upon a degree

of signal persistence. For example, ant pheromonal signals persist for a limited time

in the environment while evaporating. At a high altitude, environmental conditions

likely do not support a system similar to chemical pheromones or markers placed

directly into the air. Similarly, the use of radio signals as artificial pheromones does

not likely produce the necessitated persistence. Ground located beacons have been

suggested to alleviate the persistence issue [62] [72]. These beacons, however, require

67

placement prior to the use of a UAV swarm. This approach has limited usefulness

due to the resource needed to place the beacons.

Instead of stigmergic communication methods, UAVs must rely upon more di-

rect approaches. UAVs rely upon passive sensed signals passed between UAVs. These

passive signals are likely encoded by the direction and position of other UAVs. Active

signals, on the other hand, are used to intentionally communicate information. These

types of communication take the form of UAV beacons or even more complex methods

of communication like broadcasting of information. For these reasons, the direct com-

munication approaches are used without the need to specifically design environmental

attributes to allow for communication.

Exact communication between the agents does not rely upon environmental

support for complex models. Basically, observable self-organized systems usually rely

upon simple communication signals. Ants use pheromones that indicate travel paths

[11]. Bird and other flocking avians rely mostly upon visual cues [11]. Even the solar

system example in chapter 2 relies upon simple communications. In light of simple

SO communications, it is reasonable to restrict communication between UAVs in the

environment to being simple and not a complex network [14] [35].

Each of these above items is combined into the total environment definition for

the UAV and Environment definition.

Definition 12: Environment Model The environment consists of dimension-

ality constraints, obstacles, a UAV set, and a target set.

Es , <× <×O × A× T (4.16)

In this implementation, the first two elements, <×<, represents the 2-dimensional

space in which the simulation elements, agents and targets, function. These numbers

offer two cartesian values describing the location of any entity existing within the

environment.

68

The variable O represents the set obstacles the UAVs are not able to fly through.

Each obstacle is two points in the 2-dimensional space. For this reason, each obstacle

represented by its end-points. With regard to this specific difference between the SO

definition of environment space and the definition made here, obstacles are passive

object and do not create an schism.

A is a copy of the agent space specification from SO in definition 7. This is an

important inclusion since the environment is capable of changing itself through the Ξ

function. If the agents were not a part of the environment, then elements within the

environment are not be able to operate upon the agents.

T is a set representative of the entire target space. Targets are similar to UAVs

and are discussed in the following sections.

With respect to the SO model defined in Section 4.1, the environment contains

all functioning elements. Essentially, it most closely matches the effector set.

4.2.1.1 Manipulation Function. The environment, representated as

β in a particular SO system instantiation, is capable of performing updates to itself

through the static system variable Ξ. These updates include actions upon the agents

and targets existing within the environment. In this way, the entities existing with

the environment are allowed to change.

4.2.2 Agents. UAVs can be seen as similar to the definition of mobile robots

presented Xiao and Michalewicz [83] in that they need to generate collision free paths

that move the robot from a starting position to a finishing position. This is a very

simplistic but very applicable view of UAVs; they clearly must avoid contact while

also generating suitable paths to follow. Building upon the general notion presented

in [83], Castillo and Trujillo present four systems intrinsic to mobile robots [12]:

1. vehicle control,

2. sensors,

69

Table 4.2: List of the different levels at which a UAV
can be modeled.

Level Description
Motion Physics controlling the movement of enti-

ties in simulation
Sensor Sensing model or scheme used for a simu-

lation
Communication Model or scheme used for communications

between UAVs
Target Engagement How UAVs can attack and destroy targets
Behavior How an UAV determines its next form of

behavior. This includes how the UAV and
humans interact

3. navigation,

4. and path planning.

Vehicle control clearly maps to the control model used by the vehicles. This translates

to the physics of how the bodies move and the appropriate modeling of flight dynamics

for the UAV agents.

The actual input to each UAV/agent to make decisions constitutes the sensors.

These are likewise defined to clearly ground the agent model.

Navigation and path planning can be effective lumped together into the agent

logic. This portion of the agents determines the next appropriate state the UAV

enters.

However, it seems more appropriate that the simulation of UAVs be seen as the

fusion of multiple distinct models. In this way there are multiple facets of UAVs that

could be simulated. Some of these simulation facets or levels are listed in table (4.2).

Each of these different levels must be addressed to design a suitable UAV sim-

ulation.

70

4.2.2.1 Motion and Physics. The physics model for the UAV/agents

are simple enough to easily facilitate simulation of UAV behaviors but yet realistic

enough to serve as suitable modeling.

Kadrovich [35] and Corner [14] opted for the use of a point mass representation.

Basically, each UAV operates as a weightless object at a point in the 2 dimensional

environment. These UAV models only rely upon a very simplified representation.

The UAVs are constrained to operated within the limits of a maximal turn radius

and maximal speed [35]. This restricts the UAV movement to little more than a

particle swarm. It is important to note that this particular investigation was concerned

with measuring and quantifying movement and communication of UAVs rather than

modeling motion accuracy.

Lotspeich [46] addressed this control problem through the use of an inertial

model. This inertial model abstracts out complex flight dynamics but still addresses

acceleration and speed of UAVs. According to Lotspeich, this approach has the

benefits of greater realism than the Kadrovich movements while still being simple

enough for simple calculation. The UAV movement can thusly be said to be first-

order. This modeling approach taken by Lotspeich uses the following attributes for

its modeling: acceleration, mass, drag,air density, velocity, and maximum thrust.

Modeling UAV motion in this investigation does not require extreme accuracy.

However, a point-mass representation does not provide enough realism. A motion

system similar to that used by Lotspeich [46] appears more suitable. The control

model, operates in much the same way as the inertia model. In general, a desired

velocity vector, D, is feed into the system. This vector is both normalized to within

acceptable turn-radii for the UAVs, r and the maximal and minimal acceleration of

the UAV. Normalization is depicted in figure (4.2).

Maximal acceleration is calculated similar to Lotspeich:

T =
MaxThrust

mass
(4.17)

71

(a) Acceptable next velocities

(b) Velocity Normalization

Figure 4.2: Velocity Effects

Following normalization, the normalized velocity vector, Dnorm, is then com-

bined with appropriate deceleration like that calculated in Lotspeich [46] to obtain a

final velocity for the UAV, D′.

D′ = Dnorm − Cdρs
1

2
Dnorm.length (4.18)

In equation (4.18), Cd is the coefficient of drag, S is the wing planform area, ρ

is the air density, and Dnorm.length is the current speed of a UAV.

4.2.2.2 Sensor Model. Different sensor models have been used, most

frequently, UAVs sensors are generally modeled like that in Kadrovich [35], Corner

[14], and Lotspeich [46]. In those works, UAVs sense anything within a specific

distance regardless of direction. This results in a circular sensing neighborhood. with

a very simple calculation used to determine whether something can be seen- simply

72

check the distances between the UAV and other object and if the distance is less than

a sensor threshold or range, then the object is considered seen.

Other sensor types include limited range of visibility [8, 72]. In this form of

sensing, rather than a circular sensor footprint, UAVs can only sense objects within

a specified cone projecting from the front of the UAV. This form of sensing appears

to more closely match aperture styled sensors.

Yet another approach relies upon two distinct sensor mechanisms- allies are

sensed within a circular range while opposing forces are detected with a cone sensor

[26].

However, it is reasonable to assume that all UAVs and targets within the sim-

ulation give off a unidirectional detectable signal or signature which make them dis-

tinguishable as in [47]. This assumption allows for a single sensor to be used. Addi-

tionally, this particular sensor may be better suited to formation building.

The sensing system used by this system is very similar to that modeled in

Kadrovich [35], Corner [14], and Lotspeich [46]. It provides for a unidirectional de-

tection of any entity within the sensor range In addition to simply detecting the

fellow UAVs, targets, or obstacles, this sensor model can determine their distance

and bearing.

In addition to a circular range for vision, Kadrovich introduced the idea of sensor

shadowing. The idea is basically that closer UAVs create a sensor detection shadow

preventing detection of other UAVs along a similar bearing. This is illustrated in

figure (4.3).

Kadrovich also posited that sensor shadowing increases the stability of imple-

menting UAV systems [35]. This stability results in shapes based upon the simulated

shadowing angle. This particular characteristic was implemented in [14, 46] with a

great deal of success.

Another sensing feature implemented by Kadrovich is a weighting scheme ap-

plied to ally UAVs based upon their angle of detection. This particular attribute is

73

UAV 1
�

UAV 3
�

UAV 2
�

U�AV 4
�

Sensor
Shadow

Sensor
Shadow

�

Shadowing
 Angle

Figure 4.3: This figure depicts sensor shadowing. UAV 1 can see UAVs 2 and 3.
However, it cannot see UAV 4 because 2 shadows it.

built around the assumption that UAVs in front are more important that those that

are behind or moving parallel to a UAV in question. This particular assumption may

not necessary hold true. For this reason, relative angle weighting is not included in

this simulation.

4.2.2.3 Communication Model. In a multi-UAV system, it seems pru-

dent to also define a suitable communication model. Communications, unlike sensing,

is harder to define - it must specify two key aspects: what types of messages are passed

between the different receivers and how the actual communication is modeled.

With regard to previous work, communications include messages that are used

to negotiate for tasks [77], divide search space [40], pheromonal signals [62], behavior

coordination cues [47, 72], position, and velocity. With regard to actual information

sent, communication can occur at both a passive or active level. In this regard, passive

communications, or cues, include the information which is not directly intended for

communication. The passive messages already exist within the environment. Such

communications include the position and velocity of known UAVs- if a UAV can sense

the existence of a UAV and its relative distance and direction, then the UAV is able

to calculate the relative velocity as well. These values can be considered passive cues.

74

Active messages include any type of message intentionally transmitted between

the UAVs. These messages are the coordination values or the assignment of jobs.

In this simulation, the position and velocity of each UAV is passively com-

municated between all UAVs and targets that can see each other. In addition to

these mentioned passive signals, it seems that a pheromonal communication is also

included since they are frequently utilized in exemplar SO systems like ants [11]. This

particular pheromonal communication is considered a passive signal. However, the

pheromonal value needs to be broadcast. This could be accomplished with a very

simple communications system that can signal a strength.

The passive signals are considered, with regard to the simulation, included into

the sensors and require no extra computation.

Explicit communications are also included in this simulation. This communica-

tions must be kept simple or universally applicable such that their evolution can be

easily facilitated. For this reason, state cues like those used in [47, 72] are not imple-

mented. Likewise, communications which describe the environment [40] or negotiate

for tasks [77] are not used. Rather, explicit communications, in this simulation, spread

the visibility of the sending UAV and the location and movement of any targets the

sender sees. Basically, explicit communication is used to announce the existence of

the sender and any targets it sees. This can be seen in figure (4.4);

4.2.2.4 Engagement Model. Since this simulation allows for the de-

struction of UAVs due to target retaliation, it requires an engagement model. Such

a model runs the range from simulated missile launch and subsequent impact and

aircraft-missile or missile-target interaction. However, more complex engagement

modeling like this was not implemented due to potential overhead and simulation

complexity.

Earlier investigations into similar simulations [64] utilized a probabilistic en-

gagement model. That is, each UAV had a maximum engagement range and a given

probability to destroy a target for each simulated attack. When the UAV gets within

75

UAV 1
�

UAV 3
�

UAV 2
�

�

Target

UAV 1’s
Sensor and Active
 Communication Range

UAV 2’s
Sensor Range

UAV 3’s
Sensor Range

Figure 4.4: This figure depicts active communication’s effect upon sensing. UAV
1 can see the target and communication with UAVs 2 and 3. Active communication
allows UAV 1 to share its passive information along with the presence of the target
with UAVs 2 and 3. The effective ability to “see” UAVs and targets is illustrated by
dotted lines.

maximum engagement range with targets, it proceeds to calculate whether it destroys

the closes target outright. This approach resulted in behavior relying upon long-shot

chances to destroy targets rather than truly cooperative behavior.

Another method used to model engagements of this type rely upon a hit point

model [63]. This second form results in more stable behaviors and cooperative be-

havior since it directly incorporates cooperation into the destruction of targets; more

UAVs attacking the same target at the same time can destroy it faster than an in-

dividuals can. The hit point model abstacts out more complex cooperative behavior

like target lasing. Such activities as target marking are rolled together into the hit

points of a target.

To support more stable behavior and the evolution of cooperative behavior, the

hit point model was selected.

4.2.2.5 Behavior and Logic Design. Returning to the review of logic

systems presented in the previous chapter, the agent logic is, at its core, rule-based.

In this case, the use of rule based behaviors is preferred to direct approaches; many

76

suitable rules are available or can be created to model different priorities in UAV

motion. Potential rules to add follow:

• Collision Avoidance [66]

• Velocity matching [66]

• Flock centering [66]

• Evasion [17]

• Migration [17]

• cooperative parallel formation [72]

• target interaction rules [47,57,72]

• simulation area boundary rules [63]

The Reynolds rules [66] coupled with Crowther’s evasion rule [17] provide a

simple framework for UAV system formations. In addition, the behaviors appear

compatible with behaviors addressing target attack [63].

Searching a specific location for targets seems to require more sophisticated

behavior than simply the Reynolds [66] and Crowther [17] rules. An ideal example

behavior for cooperative system search is that observed in [72]. In this work simulating

a decentralized search by UAVs, there is little overlap of search locations by the UAVs.

Generally, in [72], the UAVs line up and search the space while in a line formation.

When the UAVs reach a boarder or edge of their environment, they move to create

another line formation sweep. A main feature for this systems success in [72] is its

formation. The formation in allows for the maintainence of UAV communication while

creating a sensor curtain to detect targets.

A similar formation is created by using variations upon Reynolds rules [66] to

both balance the distance between the UAV agents while keeping them close enough

to maintain contact ranges. Reynold’s Rules [66] could be redesigned to take into

account threshold distances at which point they are activated. This technique is

77

used by Kadrovich [35] to create a preferred distance band which can lock UAVs

into formation. This type of behavior is designed to create stable configurations of

UAVs [35].

This approach to formation generation requires implementations of the Reynold’s

rules [66] which take into account acceptable formation distance thresholds. These

thresholded variations of the cohesion and separation rules between agents can be

used to specify the proximities between agents for a type of formation.

Luaall [47] provides for additional behavior rules with potential for this system.

Specifically, the use of orbiting behaviors for UAV loitering and coordination has

promise as part of the target interaction rules. This particular behavior allows UAVs

to stay in loitering positions outside of danger while waiting for an opportune time

to attack the target [63]. Direct attacking appears to be a variant of Reynolds flock

centering [66]. The difference used in [47] is an attraction toward targets instead of

cooperating UAVs. One thing is clear about this particular behavior as observer in [63]

is that a behavior rule to attack targets must also consider situations in which two or

more targets are known by a target. In the two-target situation, attraction towards

the center of the two targets may place the UAV outside of an attack range with the

any of the targets. In this case, a target-centering rule is actual detrimental towards a

UAV SO system. To correct this problem, there must be a weighting associated with

the distance of a UAV from a target. This weighting places a higher attractiveness

for targets that are closer instead of equal attraction for all known targets.

A rule causing the UAV to avoid crossing simulation boundaries is also be useful

[63]. However, taken one step further, this rule is extended to allow avoidance of all

obstacles in the environment and the borders are represented simply as obstacles.

A list of the behavior rules that are implemented in this system follow:

• Evasion [66] [17]

• obstacle and border avoidance [63]

78

• Alignment Matching [66]

• Thresholded Cohesion

• Thresholded Separation

• Weighted Target Attraction [47] [63]

• flat target attraction

• Thresholded Target Avoidance

• Target Orbiting [47]

These rules effectively fall within three categories: safety, formations, and target

behavior. The safety behavior includes evasion and obstacle / border avoidance. Since

these rules are always applicable, it is appropriate to set them to an arbitrarily high

weight.

The formation rules, velocity matching, thresholded separation, and thresholded

cohesion are necessary for safe formations. Basically, these rules combine to create

stable and useful formations.

The target behaviors consist of weighted target attraction, flat target attraction,

avoidance, and orbiting rules. These different rules are used by the UAVs to effectively

interact with the targets.

Due to the desire for a simple method to reduce complexity and potential evolu-

tionary algorithm runtimes, a behavior archetype approach has been selected instead

of directly tying the behavior matrix outputs to the behavior rule expression weights.

This reduces the overall complexity and allow values which cannot easily be described

by a linear dynamic expression to be within each archetype. An example of these dif-

ficult to express values are the angles which are allowed for formations to be built.

The behavior matrix itself is a perceptron. This follows from the apparent suc-

cess in [63] over a genetic programming method for selecting behavior archetypes.

Additionally, the perceptron design for a behavior matrix allows much simpler repre-

sentation and evolution. The perceptron model offers both a simple model for evolu-

79

tion [1, 6, 49] while still providing a framework for deciding when particular behavior

archetypes are applied.

4.2.2.6 Senses. The UAV behavior model relies upon two specific

senses as input to the behavior matrix: UAV density and a pheromone-like target

indicator [63]. These particular senses were selected since they appear to provide the

necessary characteristics to identify when the UAVs in this system select different

behaviors.

Formation specific cues, particular those governing the proximity and UAV pop-

ulation can be derived from the UAV density sense. In this way, behavior archetypes

with the appropriate formations can be selected.

The other sense, the pheromone-like target indicator was used in [63] to great

effect. This sense operates as a type of passive communication between UAVs to indi-

cate when a particular UAV has located a target. Due to the difficulty use pheromonal

models that propagate along geographical locations, this model only allows propaga-

tion through UAVs. By modifying the behavior rules addressing attack, the target

indicator pheromone becomes a significant asset for attacks. The necessary behavior

rule modifications include allowing attack attraction towards allied UAVs with the

strongest target indicator. These modifications cause a UAV swarm to move toward

targets in anticipation for attack.

Proximity to environmental boundaries or targets is not indicated as a significant

sense. This is due to the design presumption that obstacle avoidance is a safety

rule. Since all safety rules are universally applicable in this system, senses addressing

potential applicability of obstacle rules are not significant.

Enemy attacks are likewise not a significant sense in this system. This is due

to the simulation presumption that all found targets can be engaged. This particular

sense may be of use in other systems employing different rules of engagement.

80

Density of UAVs employing specific behavior archetypes was utilized in [63].

Careful examination of the results from that investigation suggest the influence of

this set of senses can be replaced by the density sense. For this reason, archetype

densities are not used as sensory values.

4.2.2.7 Visibility. The agents also have a sensor envelope around their

position. This sensor envelope encompasses a localized neighborhood [46] [63] that

the UAV can see. Everything outside this envelope cannot be seen whereas pertinent

things within the envelope are known to the agent.

Within this neighborhood, the UAVs can passively detect the position, velocity,

and pheromonal signals broadcasted by each known UAV. These values are used by

the behavior rules to compute next suggested directions.

The effective sensor environment includes passive sensing of both targets and

cooperative UAVs. This restricts the UAVs visibility of both friendly UAVs and

opposing force targets. Limiting the visible range of UAVs allows greater scalability

than methods with more global visibility [46].

Additionally, like the work in Kadrovich [35] there is an implemented shadowing

of UAVs that cannot be seen. This provides greater formation stability for interacting

UAVs than other approaches. Alternatives to this form of limiting performed by [35]

and [46] is limiting the visibility of UAVs to a specific number that are the closest [59].

This particular approach does not appear to create formation stability in a specifically

geometric way.

In addition to shadowing, Kadrovich also implemented a peripheral weighting

scheme depending upon the location of a peer UAV to the UAV in question. This

weighting made UAVs directly ahead much more valuable than UAVs behind or even

to the side. Unlike visibility shadowing, peripheral weighting does not appear to

confer additional benefits to this investigation. In fact, this type of weighting may

actually impede formation building if the UAVs prefer flying in parallel directions

rather than follow-the-leader.

81

4.2.2.8 Agent State. Agent state is basically the representation of the

specific instantiation from previous description of the UAV models. Each agent state

contains information concerning the agent’s current position and velocity. Since the

environment model is two dimensional, the position and velocity are two dimensional.

The position of an agent, P , represents only two cartesian coordinates which describe

the UAVs location in the environment. The velocity, D, though also being only two

numbers, represents the direction in which the UAV is flying as a force vector. As

such, its length encodes the current speed at which the UAV is flying. This value is

centered upon the current position of the UAV such that if the UAV continued moving

in the same direction, the next state is simply the sum of position and velocity.

Pk+1 = Pk + Dk (4.19)

The logic components of the agent require certain variables to function as well.

These variables are used for feedback when the UAV performs its next state changes.

Information encoded in the state for the logic also includes what behavior archetype

the UAV is currently in, BA, and the previous values for the pheromonal target

indicator, p. In this case, BA is limited by the number of archetypes in BA. p

is limited in the range of [0.0...1.0]. In this regard, each UAV broadcasts a signal

describing the pheromonal strength at their location. In this way, p represents the

pheromonal scores that the agent senses from its environment. The pheromonal scores

are saved within the agent because the environment is unable to save them. This is

all combined to form the agent state tuple in definition 17.

The engagement model also requires some information be saved to the state.

This information maintains the current amount of damage caused to each UAV, H.

As such, this value indicates how much more damage needs to be caused to a UAV

before it is destroyed. The necessity for this value is made more explicit in Section

4.2.4.

82

Additionally, the pertinent visible aspects are included within the agent state.

The purpose of this is made more evident in the discussion of agent change func-

tions. The pertinent visible aspects include all visible UAVs and targets existing with

the detected neighborhood. In this state definition, N̂ represents sensed UAVs, T̂

represents the known targets, and Ô represents the known obstacles.

Definition 17: Agent State the agents state is the exact modular implemen-

tation of specific values associated with each Agent at an instance in the model. This

state is represented as sI in the SO model.

sI , (P,D,BA, p, H, N̂ , T̂ , Ô) (4.20)

The values of the agent state mappable to the SO system macro state are the

position, P ; velocity, D; and remaining hit points, H, of each agent.

4.2.2.9 Agent change functions. The agents are capable of changing

their own state with the δ function. These function models the different contributions

that each agent has to the state and variables of other agents.

The function δ is used by an agent to change its own state. This is performed

by feeding the sensor values from the environment into the behavior matrix. This

resultant values from the behavior matrix then indicate which behavior from the

available behavior archetypes are used. In this way, ba is updated. The position and

velocity of the agent are then updated by the indicated values from the behavior

archetype.

In addition to this, δ enables the pheromonal value updates. This update occurs

in a fairly simplistic manner [63] rather than more complex pheromonal models like

that used in [60]. This is due to the easier compution provided by the simple model.

Also, the performance of the simple model in [63] appears to provides suitable cuing

for behavior.

83

Lastly, the next neighborhood representation is generated by each agent by

utilizing the SO system function g upon the environmental state of the dynamic sys-

tem. This essentially updates directly from the dynamic environment. This function

also models direct UAV to UAV communication. This effect of direct UAV to UAV

communication can be performed by one UAV altering the other’s observations. In

this simulation, active communication using g is performed by each UAV detecting

whether other sensed UAVs are actively communicating.If the active communication

range of a UAV is greater than the sensor range of a different UAV, then the UAV

that cannot sense the communicating UAV receives the active signal and have its

neighborhood modified. In addition to actively broadcasting UAV position, UAVs

also broadcast known target locations within their communication range. For the

sake of simulation, active communication can be disabled.

A final function, χ is used by a UAV to interact with its environment. The only

way in which a UAV in this simulation interacts with the environment is to destroy

or attack a target. The actual way in which attacking is modeled is handled in the

appropriate section. Basically, this function only serves the purpose of allocating

damage to targets.

These three function come together to describe how UAVs are able to alter their

own state representation, actively communicate, and affect their environment.

4.2.3 Targets. Targets, simply put, operate almost identically to UAVs.

They have the same characteristics and the same general structure. They rely upon

the same state representations and so forth.

4.2.4 Engagement. Attacks between UAVs and targets use a hitpoint based

approach [63]. Using this approach, UAVs deal a certain guaranteed amount of dam-

age to the closest target within attack range at every iteration. Likewise, targets deal

a similar guaranteed amount of damage back to the closest UAV in attack range. THis

approach is heavily weighted towards cooperative engagement since multiple UAVs

84

Table 4.3: This table illustrates how a singular UAV
with an attack range of 10, attack strength of 1, 10
hitpoints, and speed of 1 dies prior to even damaging
a target with an attack range of 20, attack strength of
1, and 10 hitpoints assuming optimal attack behavior.

Iteration Target Life Total UAV
Attack
Strength

UAV Dis-
tance

UAV Life

0 10 1 21 10
1 10 1 20 9
2 10 1 19 8
3 10 1 18 7
4 10 1 17 6
5 10 1 16 5
6 10 1 15 4
7 10 1 14 3
8 10 1 13 2
9 10 1 12 1
10 10 0 11 0

can deal much more damage to a singular target than a sole target can deal to the

closest UAV.

This differs from a success probability approach used in [64]. In this approach,

each UAV and target had a probabilistic chance to destroy an opposing entity at

every time interval when the entity is in range. The probability approach was far

too unpredictable and resulted in situations where a single UAV could unrealistically

destroy a target [64]. The hitpoint based approach has experimentally demonstrated

that its results are more stable and less unpredictable [63].

Since the engagement model allows for attacks against on a single UAV or target

at each simulation instance, this model is heavily weighted towards cooperative action.

Tables (4.3-4.5) illustrates how the hitpoint approach is heavily weighted towards

cooperative behavior.

85

Table 4.4: This table illustrates how a two UAVs
with an attack range of 10, attack strength of 1, 10
hitpoints, and speed of 1 dies and with the possibility
to successfully destroy a target with an attack range
of 20, attack strength of 1, and 10 hitpoints assuming
optimal attack behavior.

Iteration Target Life Total UAV
Attack
Strength

UAV Dis-
tance

UAV 1 Life UAV 2 Life

0 10 2 21 10 10
1 10 2 20 9 10
2 10 2 19 8 10
3 10 2 18 7 10
4 10 2 17 6 10
5 10 2 16 5 10
6 10 2 15 4 10
7 10 2 14 3 10
8 10 2 13 2 10
9 10 2 12 1 10
10 10 1 11 0 10
11 9 1 10 0 9
12 8 1 9 0 8
13 7 1 8 0 7
14 6 1 7 0 6
15 5 1 6 0 5
16 4 1 5 0 4
17 3 1 4 0 3
18 2 1 3 0 2
19 1 1 2 0 1
20 0 0 1 0 0

86

Table 4.5: This table illustrates how a three UAVs
with an attack range of 10, attack strength of 1, 10
hitpoints, and speed of 1 can successfully destroy a
target with an attack range of 20, attack strength of
1, and 10 hitpoints assuming optimal attack behavior
and only suffer the complete loss of one UAV.

Iteration Target Life Total UAV
Attack
Strength

UAV Dis-
tance

UAV 1 Life UAV 2 Life UAV 3 Life

0 10 3 21 10 10 10
1 10 3 20 9 10 10
2 10 3 19 8 10 10
3 10 3 18 7 10 10
4 10 3 17 6 10 10
5 10 3 16 5 10 10
6 10 3 15 4 10 10
7 10 3 14 3 10 10
8 10 3 13 2 10 10
9 10 3 12 1 10 10
10 10 2 11 0 10 10
11 8 2 10 0 9 10
12 6 2 9 0 8 10
13 4 2 8 0 7 10
14 2 2 7 0 6 10
15 0 2 6 0 5 10

87

4.3 GA Design

As mentioned earlier, this investigation evolves a suitable behavior set for gen-

eralized application to specific scenarios. This system must evolve both the behavior

archetypes and the perceptrons. This section assumes a general familiarity with ge-

netic algorithms.

4.3.1 General methodology. Drawing upon inspiration from [22, 49, 63, 64],

this investigation uses a genetic algorithm approach to map UAV behavior from the

sensory inputs to the potential outputs. With the variables defined for UAV senses

and outputs, the potential problem space is extremely large. Given three behavior

archetypes, there are 2 senses and 3 outputs. Considering that the behavior archetypes

themselves are also evolved, the values constrained within them is based upon the 12

variable values. This indicates that there are 42 different numbers that need to be

evolved for a system that relies upon only 3 behavior archetypes.

4.3.2 Representation. The perceptron, mapping the sensory inputs to be-

havior archetypes, is fully connected. As such, the evolvable elements are the weights

placed upon each sensory input.

Previous work into using a perceptron to map behavior archetypes suggests

using a very simple bit-based representation since more dynamic approaches have a

harder time balancing sensory values for corresponding archetype evaluations [64]. In

addition, to simplify the representative perceptron and reduce evolutionary complex-

ity in representation, the activation threshold for the neurons is set to zero.

The actual number range is similar to that implemented in similar works [22,49].

Each weighting or gene is assigned 5 bits and operates in the range of [−16...15] as a

Gray Code [29]. For a completely connected perceptron, this means there are 30 bits

which encode the six distinct connection weights in a behavior matrix. Each behavior

archetype, on the other hand, has 60 bits encoding 12 different five bit genes.

88

The primary reason why the 5 bit connection weights are Gray encodings is

to lessen the dramatic effect of Hamming cliffs [5]. However, if the Hamming cliffs

were completely removed, then the GA may have problems jumping out of local best

solutions and fail to find the global best.

In addition to the perceptron connection weights in the behavior matrix, the

values for each rule expression weight within each behavior archetype are also impor-

tant. These values also function with 5 bit representations and according to the same

distribution as the perceptron input weights above. However, the range for rule ex-

pression are in the interval [0.0...1.0]. Transformation between the perceptron weight

is accomplished via the following equation:

RuleWeight =
InputWeight + 16

31
(4.21)

The transformation provided in Equation (4.21) is used to normalize the Gray code

values associated with each representation gene to a value in the [0.0...1.0] range. This

normalization prevents rules from having a negative effect upon the UAV behavior.

The behavior archetypes also contain the specific ranges for various rule expres-

sions. These values are also in the range of [0.0...1.0]. These values are the percentage

of the sensor range that the particular radius occupies. The following equation better

expresses this.

RadiusLength = RadiusRuleWeight ∗ SensorRange (4.22)

This representation structure is demonstrated in (4.5).

In the event that multiple types of UAVs must be simultaneously evolved, the

representation is actually increased in size such that there is a single perceptron and

set of behavior archetypes for each type of UAV. This is not to say that each UAV has

its own independent behavior representation. Rather, each type of UAV shares the

89

Figure 4.5: There is a connection weight for each sense for each behavior archetype.
These are followed by 12 genes which describe the weights and radii for the behavior
rules for each behavior archetype.

same representation with all of the others but independently uses the representation

to determine its next state.

This Gray encoding, however, is unlike the gene mapping used in previous works

[63,64]. In those works, each gene was represented by 8 bits with a gene value in the

range [−10..10]. In the old encoding, the first four bits represent negative numbers:

-4, -3, -2, and -1. The last half stands for the positive numbers 1, 2, 3, and 4. When

calculating what an 8 bit representation actual is as an integer, the number values of

each binary location are summed. For example, 11010010 is -4 + -3 + -1 + 3 = -5.

Single bit mutations move this value to -1, -2, -7, -4, -4, -3, -8, or -1 respectively.

In this old representation, extreme values are much less likely to be selected. By

minimizing the likelihood that extremes are randomly selected, there is a much greater

chance that the resultant behavior matrix has connection weights centered on 0 and

behavior archetype weights centered on .5. This was viewed as a beneficial trait in [63].

However, experimentation demonstrated that this representation actually diminished

the evolutionary capabilities of this system since it avoided extreme values.

4.3.3 Selection. This genetic algorithm utilizes a fixed population size for

each generation. Since the population size is fixed, there must be some method

90

to reduce the combined newly created and old chromosomes to a maximal allowed

population size. In this case, the method selected here reflects the best type identified

for GAs in performing this type of calculation [63]: elitist.

Elitism preserves the most successful individuals across generations. For exam-

ple, if the maximal population size is 3, then the three fittest individuals are the only

ones which continue into the next generation. However, purely elitism usually leads

to very quick convergence on local solutions rather than global ones. Is it not nec-

essarily as much of a concern for this particular problem because the fitness of each

solution is generated from multiple simulations with various scores. For this reason,

the actual score of each solution may be slightly skewed. This inaccuracy many offer

results similar to tournament selection method [29]

4.3.4 Mutation. There are two forms of mutation utilized by this system.

The first operator, taken from [63] acts upon the entire binary string. In much the

same way as CHC [23] performs its mutation, a number of bits up to a maximal

mutation neighborhood size in the solution are flipped. The exact bits to flip are

selected by a roulette wheel selection [54]. Unlike CHC, this operator is used to

perform local searching by flipping a small number of bits. If the number of bits to

flip is too large, then the operator becomes destructive.

The second type of mutation seeks to reinvigorate behavior archetypes which

have become unused. It accomplishes this by randomly selecting behavior archetype

and randomizing all of its associated bits in both the associated perceptron and the

behavior rule values.

4.3.5 Recombination. A modified two-point recombination is utilized by

this GA [29]. Previous similar efforts utilized a unform crossover operator [63, 64].

However, those works used an eight bit representation for each number value. In the

eight bit representation, the location of the bit within each gene had a controlled the

correspondence value. With the Gray code representation [22, 29, 49] points for the

91

crossover operator are limited to between genes. This prevents the crossover operator

from altering the gene values in inappropriate ways.

In addition to limiting the crossover point to between genes and not alleles, this

operator performs a normal two-point crossover at two locations within each solution.

The first two-point crossover is performed within the behavior matrix perceptron

section and the second crossover within the behavior archetypes.

4.3.6 Alteration of Scenarios. Previous experimentation in [63, 64] demon-

strated that there is a large initial learning curve which must be addressed at the

beginning of a GA run. By varying the difficulty of scenarios, the fitness function

is essentially adaptive [45]. By exposing the population to easier scenarios at the

beginning and increasing the scenario difficulty as the GA operates, there are more

exploration of the solution space. In contrast with the work performed in [45], experi-

mentation with this setup suggests that a fixed schedule fitness function3 outperforms

a static fitness function.

4.3.7 Fitness Function. The fitness of an individual simulation is deter-

mined by the amount of damage caused to the targets [63,64] based upon the number

of UAVs in the scenario. This fitness function encapsulates the needs for the UAV

systems to search the area, coordinate attacks, and successfully damage and destroy

targets without suffering excessive attrition. Additionally, by dividing the resulting

damage the UAVs perform by the UAVs present, the fitness function can return val-

ues in the same interval if the ratio of targets to UAVs is identical when scaled. The

fitness function assigns 100 points for each tenth of a target being damaged. The

total fitness function is then computed as the summation of damage to each target

multiplied by 100 and then scaled by UAV population. When multiple simulations

are run to obtain a generalized fitness score, the fitness functions from each individual

simulation are averaged to obtain a composite score.

3The scenarios are changed after a fixed number of generations

92

As related to the SO model, the fitness function solely compares the amount of

remaining hit points at the final simulation state to their starting hit points. That

value is then divided by the number of UAVs present in the starting state. In this

way, the fitness function does not offer any preference to the specific behaviors or ways

in which the UAVs destroy the targets. It only measures the efficacy for a particular

behavior model given the initial state at destroying the targets.

4.4 Simulation Design

With regard to actual design and implementation of the simulator, that infor-

mation is in Appendix (B). That specific information does not affect the results

generated by this system. Rather, it describes the way in which this system works

and is therefore a tangent subject to the system results themselves.

4.5 Summary

This chapter illustrates the high-level design decisions for a system capable of

evolving SO UAV behaviors. The self-organization symbolic model is described. This

design relies upon the features and background presented in Chapter 2. Next, the

design choices for the UAV and environment models are discussed. The design for the

genetic algorithm is addressed in the third section of this chapter. Finally, engineering

issues pertinent to the simulation platform are discussed.

93

V. Low Level Design and Implementation

More specific grounding of simulation features is necessary to completely de-

scribe the system. The particular features include mathematical details asso-

ciated on how the UAVs determine the next behavior. This involves equations relating

to the behavior rules, senses, and behavior archetype selection methods. Additionally,

specific features connected to the various simulation models must be addressed.

For each UAV, the simulation first calculates what entities are visible to each

other. Following this, active communication, if employed, is performed. Once the vis-

ible environment features are determine for each UAV, the sense values are extracted.

The sense values are then fed into the perceptron matrix to obtain the selected be-

havior archetype. Following identification of the applicable behavior archetype, the

behavior rules are calculated and combined to obtain the UAV’s optimal direction.

Then, the physical model restrictions are used with the desired direction to obtain

the feasible next direction. All UAV positions are then updated and engagements

between UAVs and targets, if any, are calculated. This process repeats until the par-

ticular simulation terminates. After all available simulations have been completed,

the genetic algorithm then performs its calculations to obtain the next generation.

In general, the flow of information between the different system components

as well as their mapping to the genetic algorithm representation is demonstrated in

Figure (5.1). This particular picture models how a particular UAV calculates its

appropriate behavior based upon cues from the environment and its own behavior

settings.

5.1 Variable and Subfunction Keys

The more detailed representations of various system components relies upon a

great deal of variables and subfunctions. Tables (5.1) and (5.1) provide symbolic

notation in order to easily relate to the modeling equations.

94

Symbol Description

N ′
U The neighborhood of viewable UAVs with respect to U

U All UAVs within the system. Equivalent to α
U.P The position vector of UAV or target U
U.D The current velocity vector of travel for UAV or target U
U.Sr The maximal sensor range of UAV or Target U
U.Cr The maximal communication range of UAV or Target U
U.Ar The maximal engagement range of UAV or Target U

T The set of all targets in the system
SA The shadowing angle for viewing. Set to 30 degrees
U.p The target spotted pheromone score for UAV U
U.den The density sense value for UAV U
U.BA The currently selected behavior archetype for UAV U

BA The set of all behavior archetypes.
BA.Cn The perceptron sensor weight for sense n for the archetype BA
Ni Neighbor i for UAV in question
Lx x Cartesian coordinate associated with vector L
Ly y Cartesian coordinate associate with vector L
BA.Ri Range i associated with behavior archetype BA
OU .Cp The closest point on obstacle O to UAV U

Ô All obstacles viewable to a particular UAV

T̂ All targets visible to a particular UAV
distSum the sum of distance to all visible obstacles for a particular UAV
Ur10part1 The direction and weight at which UAV U avoids an obstacle based

on angle of approach
Ur10part2 direction and weight at which UAV U avoids an obstacle based on

proximity
V.length The length of vector V
U.alive whether UAV or target U is alive
p The pheromonal target detection strength for a specific UAV.
G The representation of a behavior model as a series of 5 bit genes.
B The set of all behavior models. There is a correspondence of one

model per type of aircraft simulated.

Table 5.1: Key to Various symbols used in low-level design equations

95

Figure 5.1: Depiction of information flow for singular UAV determining its next
state. In addition, this figure demonstrates how the genetic representation is con-
nected to UAV behavior.

5.2 Sensor Vision

Given the assumed unidirectional sensor with a 100% correct detection rate like

that used in [47, 63, 64, 72], sensing between targets and UAVs is relatively simple.

Each UAV compares the distance between it and every other UAV and target. If the

distance is within its sensor range and that object is not shadowed [35,46] by another,

that object is considered seen and properly classified. Equations describing how this

is performed in this simulation follow:

∀U∈UN ′
U = {∀V ∈ U |V 6= U ∧ dist(U.P, V.P) ≤ U.Sr} (5.1)

All UAVs that can possibly ‘see’ each other are added to specific lists in Equations

(5.1). These lists do not yet address sensor shadowing. That determination is accom-

96

Subfunction Description

dist(X, Y) The distance between points X and Y
Max(NU .p) The maximum target spotted pheromone score for a UAV in the

neighborhood of UAV U
max(...) The behavior archetype with the highest scalar resulting from the

executed values
Orbit(P, D, t.P) a vector tangent to the point P on a circle drawn around t.P ,closet

in angle to D
di(U.P, t.P) a tangent vector on the circle centered at t.P at U.P
OV ect(O,U) a vector parallel to obstacle O that is closest to the current velocity

of UAV U
∠(P1 − P2) the angular direction of a line from point P1 to point P2

inter(P,O) The intersection point of a line drawn from point P to its closest
point on obstacle O

between(P, P1, P2) A Boolean function indicating whether point P falls between points
P1 and P2

random(X) Generates a uniformly distributed random number between 0 and
X

Table 5.2: Key to Various subfunctions used in low-level design equations

plished in Equation (5.5) by generating NU .

∀U∈U T̂U = {∀T ∈ T |dist(U.P, T.P) ≤ U.Sr} (5.2)

Likewise, all targets that can be ‘seen’ by the UAV are included into the specific

UAV’s representation of the environment in Equation (5.2). This is done to facilitate

UAV behaviors that address targets such as target attraction or avoidance.

∀t∈T T̂t = {∀U ∈ U |dist(t.P, U.P) ≤ t.Sr} (5.3)

All targets that can ‘see’ each other are similarly computed in Equation (5.3). This

is done to allow targets to execute cooperative behaviors is so implemented.

∀U∈UÔU = {∀o ∈ O|dist(U.P, o.CpU) < U.Sr} (5.4)

97

All obstacles that can be ‘seen’ by UAVs are also computed in Equation (5.4). This

allows UAVs to avoid impacting the obstacles and to properly avoid them with the

obstacle avoidance rules.

∀U∈UNU = {∀w ∈ N ′
U , v ∈ N ′

U |w 6= v ∧ ∠(w.P, v.P, U.P) ≥ (180◦ − SA)} (5.5)

Finally, the neighbor UAVs list are corrected for sensor shadowing [14, 35, 46]. This

is accomplished in Equation (5.5.

5.2.1 Explicit Communication. When operating in this model, active com-

munication allows the communicator to essentially add both itself and all targets that

it sees to the effective sensor representation of the receiving UAVs. This particular

ability is meant to increase the cooperative ability by allowing information sharing

between neighbors.

∀U∈U,n∈NU
dist(n.P, U.P) ≤ U.Cr ⇒ Nn = Nn ∪ U ∧ Tn = Tn + TU (5.6)

This Equation (5.6) basically allows UAVs with long distance communication

capabilities to announce their existent to all nearby UAVs. Note that this particular

implementation also allows UAVs that cannot see each other due to sensor shadowing

effects to communication. That is, since explicit communication occurs between all

UAVs within communication range, UAVs that are not able to see each other due

to sensor shadowing are informed of the other’s existence. The applicability to all

UAVs rather than only those that are sensed is made to allow for stability generated

through communication as well as more limited neighborhoods - the communications

act as unidirectional broadcasts. As such, they are probably not, in the physical

world, impeded by factors similar to sensor shadowing.

98

5.2.2 Target Sense Propagation. To facilitate quick computation, a very

simple linear model for the target sense pheromone is implemented rather than those

more comples like in [62]. This choice is also made to facilitate quick changes in

target pheromone when formations split. For this reason, the target sense pheromone

operates in a simple linear manner.

In this simple pheromonal model, a particular UAV’s target pheromone strength

is either 1 if it senses a target or half the strongest detected target pheromone from

a neighbor. It is worth noting that if the value of p falls below .001, it is truncated

to zero.

U.p =


 1 |T | > 0

.1Max(N.p) otherwise


 (5.7)

The operation of this equation can be better seen in figure (5.2).

5.2.3 UAV Density Calculation. The density of neighboring UAVs is cal-

culated by consideration of both the distance and the number of known neighboring

UAVs [63, 64]. This calculation operates in the range of [0..|N |] where N is the set

of known neighbors. The potentially unlimited upper range of density could pose

problems where this sense overwhelms the target pheromone sense. However, experi-

mentation has demonstrated this range does not hinder performance.

U.den =

|N |∑
i=0

1

dist(U.P,Ni.P)
(5.8)

Attempts at correcting the upper range issue for this calculation revealed other

similar ways to determine UAV density. For example, the approximate area of the

sensor envelope that is shadowed by a neighboring UAV could be used. However, this

requires complicated computations that slow down the simulation and are therefore

not thoroughly considered. Another less computationally intensive method is to de-

termine how much of the sensor envelope’s circumference is eclipsed by neighboring

99

Figure 5.2: Plot of target detection pheromone propagation for a specific scenario.
UAVs at (420, 380), (400, 440), (400, 480), (400, 520) and target at (400, 4000). Plot
assumes a sensor radius of 5km

UAV sensor shadows. This approach likewise results in excessive computation and is

therefore not implemented.

A graphical depiction of this sense can be seen in figure (5.3);

5.2.4 Selection of Behavior Archetype. After the sensor values are cal-

culated, the selection of the appropriate behavior archetype can proceed. This is

performed in the manner of a single layer perceptron [54].

U.BA = ∀b∈BAmax(U.p ∗ b.C1 + U.den ∗ b.C2) (5.9)

100

Figure 5.3: Plot of Density sense values for a specific scenario. UAVs at (420, 380),
(400, 440), (400, 480), (400, 520). Plot assumes a sensor radius of 30km

The single layered perceptron is selected to operate in conjunction with a be-

havior archetype architecture.

In the event that two or more behavior archetypes have the same selection scores

from the perceptron, the behavior archetype occurring earlier in the representation

is given priority. This provides a significant weighting to early behavior archetypes

when both sense equations produce values of zero - since all behavior archetypes are

then weighted zero, the first archetype is given selected.

101

5.3 Rule Equations

As explained in section 4.2.2.5, there are ten different rules governing the way a

UAV moves. Each of these rules is mathematically defined in the following subsections

and depicted graphically.

5.3.1 Rule 1: Alignment. A particular UAV tries to match directions for its

velocity with all other UAVs. This is expressed in the following definition where UR1

is the value of rule 1 with respect to U . This rule is essentially the same as that used

by Reynolds [66].

UR1 =

|N |∑
i=0

Ni.D

|N | (5.10)

Other examined forms for this rule include a distance weighted alignment as

shown in Equation (5.11). The unweighted version was determined to be less compu-

tationally intensive since it required less divisions while resulting in similar behaviors.

UR1 =

|N |∑
i=0

Ni.D

dist(U.P,Ni.P)

|N | (5.11)

The the unweighted alignment behavior can be seen in figure (5.4). Basically,

this particular rule causes UAVs that can see each other to fly in the same direction.

This behavior is effective for making formations fly in the same direction.

5.3.2 Rule 2: Target Orbit. This rule provides a behavior causing UAVs

to circle around a target at a safe distance. This is performed by first calculating

directions that run perpendicular to the line between U and the target. Then, the

perpendicular direction that is closest to U ’s current direction is selected. Determina-

tion of perpendiculars is performed for each target that U sees. The resulting selected

perpendiculars are summed for each target that U is more than 70% sensor range

102

Figure 5.4: Field plot for alignment rule. UAVs at (420, 380), (400, 440), (400, 480),
(400, 520) with individual velocities indicated by their direction line. Plot assumes a
sensor radius of 30km

distant. The reason for the effective range for orbits is simple: if a UAV gets too close

to a target and engaged, it might as well attack that target rather than simply circle

around it. This rule is inspired by Lua [47].

The perpendicular bearings are determined by the following Equations (5.12)

and (5.13):

d1(U.P, t.P) = (t.Py − U.Py, U.Px − t.Px) (5.12)

d2(U.P, t.P) = (U.Py − t.Py, t.Px − U.Px) (5.13)

103

Once the perpendiculars are calculated, the particular one closest to the current

velocity is selected. This particular selection is performed in Equation (5.14).

Orbit(U.P, U.D, t.P) =

2
4 d1(U.P, t.P) dist(d1(U.P, t.P), U.D) < dist(d2(U.P, t.P), U.D)

d2(U.P, t.P) otherwise

3
5 (5.14)

The preferred orbiting directions for each known target are then summed for

each target that is more than 70% distant. This is accomplished in Equation (5.15).

The reason this rule is applicable at a 70% distance is to facilitate cooperative function

with behavior rules that cause flat target attraction and flat target repulsion. When

these rules are combined, they can cause the UAVs to enter into stable orbits around

a particular target. This combination of rules can be seen in Figure (5.5). When

combined, these rules cause UAVs to

UR2 =

|T̂ |∑
i=0


 Orbit(U.P, U.D, t.Pi) dist(U.P, t.Pi) ≥ .7U.Sr

{0, 0} otherwise


 (5.15)

The results of this rule can be seen in figure (5.6). Clearly, when examining

Figure (5.6), this rule causes a UAV to prefer to orbit around a target at a safe

distance.

5.3.3 Rule 3: Cohesion. UAVs are attracted towards each other if the

distance between them is greater than a certain range. The influence of attraction

towards each UAV is based upon the distance UAV U is from a specified percentage

of U ’s sensor value, r1. This rule is inspired by both Reynolds [66] and Kadrovich

[35]. Additionally, this particular version has shown usefulness in previous work [63].

Equation (5.16) demonstrates how this rule is computed.

104

Figure 5.5: Field plot for combining orbiting, flat target attraction, and flat target
repulsion. UAVs at (380, 400) and (420, 400). There is a target at (400, 400). Plot
assumes a sensor radius of 10km and a velocity of (0,1). Plot also assumes that the
UAV for which the plot is drawn is traveling (0,1).

UR3 =

|N|X

i=0

(Ni.P − U.P)(dist(U.P, Ni.P)− U.BA.r1 ∗ U.Sr)

2
4 0 dist(U.P, Ni.P) ≤ U.BA.r1 ∗ U.Sr

1 otherwise

3
5

|N | (5.16)

In Kadrovich’s work, this rule and a separation rule were combined into a single

rule. In this work, the individual rules were kept separate to enable alterations to

the cohesive and separation rules independently. Rather than use the cohesion and

separation equation designed by Kadrovich [35], these different aspects are separated

105

Figure 5.6: Field plot for orbiting rule. UAVs at (420, 380), (400, 440), (400, 480),
(400, 520) with individual velocities indicated by their direction line. Plot assumes a
sensor radius of 30km and a velocity of (0,1).

to allow more flexible behavior evolution. The results of this rule can be seen in figure

(5.7). In allowing separate weights for cohesion and separation independently, each

particular rule can be independently addressed by the genetic algorithm. That is to

say, the individual affects of cohesion or separation can be changed without necessarily

changing the other.

As demonstrated in Figure (5.7), this behavior results in UAVs preferring to

stay within a specified distance with other allied UAVs. This particular behavior rule

has promise in preventing UAV formations from spreading out too far.

106

Figure 5.7: Field plot for cohesion rule. UAVs at (420, 380), (400, 440), (400, 480),
(400, 520) with individual velocities indicated by their direction line. Plot assumes a
sensor radius of 30km and radius of 15km.

5.3.4 Rule 4: Separation. If UAV U is too close to other UAVs, then there

is a weight based repulsion similar to cohesion. The influence of repulsion is based

upon how much closer other UAVs are to U past a specified range, U.Sr ∗ U.BA.r2.

This, too, was inspired by Kadrovich [35]. Equation (5.17) demonstrates how the

separation rule is computed.

UR4 =

|N|X

i=0

(U.P −Ni.P)(U.BA.r2 ∗ U.Sr − dist(U.P, Ni.P))

2
4 1 dist(U.P, Ni.P) < U.BA.r2 ∗ U.Sr

0 otherwise

3
5

|N | (5.17)

107

The results of this rule can be seen in figure (5.8). Like the behavior for the

cohesion rule, separation has a threshold of operation. Unlike cohesion, separation

causes the UAVs to maintain a minimal distance to other UAVs. This means that

separation has promise as a rule that can expand the sizes of UAV formations. Figure

(5.8) demonstrates the effects of this rule.

Figure 5.8: Field plot for separation rule. UAVs at (420, 380), (400, 440), (400,
480), (400, 520) with individual velocities indicated by their direction line. Plot
assumes a sensor radius of 30km and radius of 15km.

5.3.5 Rule 5: Weighted Target Attraction. UAVs are attracted to targets

based upon the distance to said target. That is, UAVs proceed towards closer targets

rather than further away targets.

108

UR5 =




|T̂ |∑
i=0

Ti.P − U.P

dist(U.P, Ti.P)5

|T̂ | |T̂ | > 0
|N |∑
i=0

Ni.p(Ni.P − U.P)

dist(U.P, Ni.P)
|N | otherwise




(5.18)

Experimentation in [64] demonstrated the need for a weighted version of target

attraction. The purpose for the weighted component is to cause the UAVs to proceed

towards specific targets rather than towards the center of a target formation. Un-

weighted target attraction behaviors cause UAVs to move towards the target center

of mass. This behavior is not detrimental when a UAV encounters a single target

- the center of mass is that target. However, when multiple targets are known to

exist, the target center of mass is between the targets and in a place at which the

UAV may not be able to actually attack. For this reason, the behavior rule used for

target attacking must provide some way to break the multi-target detection deadlock.

The approach taken here is that the UAV attacks the closer target. Other weighting

schemes may be of more use with other simulations. However, since the targets are

homogeneous, they are all equal with respect to system performance. The preference

towards attacking closer targets with this rule can be seen in Figure (5.9)

5.3.6 Rule 6: Flat Target Repulsion. UAVs are repelled from targets if

they are within a 90% of their sensor range. The repulsion effect is uniform across all

visible targets. The range prior to activation is geared to allow this rule to operation in

conjunction to the target orbiting rule. Flat target repulsion is calculated in Equations

(5.19).

UR6 =

|T̂ |∑

i=0

(U.P − Ti.P)


 1 dist(U.P, Ti.P) < .9U.Sr ∨ dist(U.P, Ti.P) < Ti.Ar

0 otherwise




|T̂ | (5.19)

109

Figure 5.9: Field plot for weighted target attraction rule. Targets at (360, 360),
(400, 450), (500, 270). Plot assumes a sensor radius of 30km.

The purpose of the 90% range before execution is to allow UAVs to observe tar-

gets without necessarily being repulsed by them. This specific range effect is intended

to allow this rule to operate in conjunction with the orbiting and flat target attraction

rules as seen in Figure (5.5). A graphical representation of this rule operation can

be seen in figure (5.10).

5.3.7 Rule 7: Weighted Target Repulsion. Each UAV is repelled from targets

if they are within a particular range. The amount of repulsion for each UAV is based

upon how close each UAV is to each target. UAVs are more repelled from close

110

Figure 5.10: Field plot for target repulsion rule. Targets at (360, 360), (400, 450),
(500, 270). Plot assumes a sensor radius of 30km.

targets than they are targets that are far away. Equation (5.20) demonstrates how

this behavior rule is calculated.

UR7 =

|T̂ |∑

i=0




(U.P−Ti.P)
(U.BA.r3∗U.Sr−dist(U.P,Ti.P)).2 |T̂ | > 0 ∧ dist(U.P, Ti.P) < U.BA.r3 ∗ U.Sr∧

U.BA.r3 ∗ U.Sr > Ti.Ar

(U.P−Ti.P)
(Ti.Ar−dist(U.P,Ti.P)).2 |T̂ | > 0 ∧ dist(U.P, Ti.P) < Ti.Ar

0 otherwise




|t̂|
(5.20)

111

This particular rule is distance weighted to cause the UAVs to be more repulsed

by individual targets rather than the center of a target formation. The difference

here is that repulsion from the target center of mass may cause a UAV to enter into a

different target’s engagement range rather than safely avoid the targets. A graphical

representation of this rule operation can be seen in figure (5.11).

Figure 5.11: Field plot for weighted target repulsion rule. Targets at (360, 360),
(400, 450), (500, 270). Plot assumes a sensor radius of 30km and threshold radius of
15km.

5.3.8 Rule 8: Flat Attraction. UAVs proceed towards the center of mass

for all known targets while they are outside of a given range with the target. This

center mass is not necessarily close to any particular target. This rule, calculated

112

in Equation (5.21) is intended to keep the UAVs within a distance to the targets

without creating a situation of undo risk.

UR8 =




|T̂ |∑
i=0

Ti.P − U.P |T̂ | > 0 ∧ dist(U.P, Ti.P) ≥ .8U.Sr

|N |∑
i=0

(Ni.P − U.P) otherwise




(5.21)

This rule is intended to cause UAVs to stop searching when they locate a target

and stay within a 80% sensor range distance to a target to facilitate coordinated

attacks. Like the constant weighting provided to the orbiting and flat target repulsion

rules, the 80% range is intended to create a maximal range of minimum range of

operation. Additionally, the constant weighting, set as it is, can combined with target

orbiting and flat repulsion to create very stable safe orbits around a target as seen

in Figure (5.5). A graphical representation of the flat attraction rule can be seen in

figure (5.12).

5.3.9 Rule 9: Evasion. UAVs move away from each other if their next

positions are too close. In this case, too close is determined to be 3 times the size

of UAVs. This rule is inspired by Crowther [17]. However, unlike his definition, this

particular implementation has application in all directions rather than simply in front

of the UAV. This rule greatly increases the survivability of UAVs during simulation

by causing them to avoid situations in which UAVs come too close.

The distance between the UAVs is calculated and truncated to a minimum value

of one in Equation (5.22). This supports multiplicative weights later in Equation

(5.24).

nDist(U.P, P) =


 dist(U.P, P) dist(U.P, P) > 1

1 otherwise


 (5.22)

113

Figure 5.12: Field plot for weighted target repulsion rule. Targets at (360, 360),
(400, 450), (500, 270) and UAVs at (320. 360) and (400, 490). Plot assumes a sensor
radius of 30km.

Next, projected future distance is computed based upon current direction and

position. This important calculation, performed in Equation (5.23), is used to deter-

mine if the evasion rule is activated in Equation (5.24).

fDist(U, T) = dist(U.P + U.D, T.P + T.D) (5.23)

Finally, the combined close proximity repulsion are summed for each known

UAV. In summing the individual evasion values for each UAV, a vector describing the

safest direction to evade towards is generation in Equation (5.24).

114

UR9 =

|N |∑

i=0




nDist(U.P,Ni.P)
3∗Size (U.P −Ni.P) fDist(U,Ni) < 3 ∗ Size∧

fDist(U,Ni) < nDist(U.P, Ni.P) | >
0 otherwise




|N | (5.24)

The design decision to implement 360 degree applicability rather than simply

within a frontal angle like Crowther’s implementation was due to a couple of reasons.

First of which, checking within specific angles requires more computation. Secondly,

the intended visual system for the UAVs already examines 360 degrees and is therefore

not limited to a range within visual capabilities. Lastly, by allowing a large range

of applicable directions, both involved UAVs can take action to avoid a catastrophic

impact. By only applying evasion to the frontal visual range like in [17], only the

UAVs which detect possible impacts in the frontal range take action.

Additionally, the activation of this rule upon future state positions prevents too

close positions in the future rather than present. If the rule were triggered by current

proximities, then it may already be too late to prevent a collision!

5.3.10 Rule 10: Obstacle Avoidance. UAVs are repelled from obstacles

based on two factors: whether the UAV’s direction intersects the obstacle and prox-

imity to the obstacle. Obstacle Avoidance causes the UAV to move in a direction

parallel to the obstacle if the UAV’s course intersects it. The weight of this direction

parallelization is based upon how sharply the UAV intersectst the obstacle. If the an-

gle is sharp, then parallization is minimal. Contrary to the parallization, each UAV

is repulsed from an obstacle if it is closer than half its sensor range.

The distance between a UAV and an object are computed based upon the closest

point between that UAV and the object. This is either an end point or the intersection

of a perpendicular line from the UAV to the object. The distance weighting between

115

the UAV and its proximity is computed by comparison to the sensor range and the

distance to the closest point on the target. This is accomplished in Equation (5.25).

d(U,O) = U.Sr − dist(U.P,OU .Cp) (5.25)

Additionally, the sum of all distances between the UAV and known obstacles is

calculated in Equation (5.26). This is done to aid in a distance based waiting for the

total behavior in Equation (5.30).

distSum =

|O|∑
i=0

d(U,Oi) (5.26)

UR10part1 =




OV ect(Oi, U)∠(U.D−U.P)+∠(Oi.Cp−U.P)
90 ∠(U.D − U.P) + ∠(Oi.Cp− U.P) < 90

∧Oi.Cp = inter(U,Oi) ∧Oi.Line

0 otherwise




(5.27)

OV ect(O, U) =




O.P1 −O.P2 ∠(U.D − U.P) + ∠(O.P1 −O.P2) <

∠(U.D − U.P) + 〈(O.P2 −O.P1)

O.P2 −O.P1 otherwise


 (5.28)

UR10part2 =


 −U.Sr−dist(U.P,Oi.Cp)

U.Sr (Oi.Cp− U.P) dist(U.P, Oi.Cp) < U.Sr/2

0 otherwise


 (5.29)

UR10 =

|Ô|∑
i=0

UR10,part1 + UR10,part2

distSum
d(U,Oi)

(5.30)

A graphical depiction of this rule’s effect is in figure (5.13). For the most part,

this rule keeps UAVs safe by providing a repulsion. As UAVs get closer to an obstacle,

this rule provides a way in which the UAVs avoid hitting the object.

116

Figure 5.13: Field plot for obstacle avoidance. Obstacles are randomly generated.
Plot assumes a sensor radius of 30km and velocity of (0,1).

5.3.11 Rule Summation and Normalization. The way in which the rules

are combined is significant. This is because it changes the influence each behavioral

rule bears upon the final direction a UAV takes. In this investigation, the rules

are weighted by the behavioral archetype values and summed. With respect to the

safety rules, evasion and obstacle avoidance, their weights are hard-coded at twice the

maximal weight for normal rules. Equation (5.31) demonstrates how the rules are

combined.

U.Dnew = (
8∑

i=1

URi

U.BA.Wi

URi
.length

) + (
10∑
i=9

URi

2

URi
.length

) (5.31)

117

Equation (5.31) demonstrates how the various behavior rules are combined.

This is accomplished through a weighted summation. Within the first summation,

the first 8 behavior rules are combined. These rules are allowed to evolve within

the system. Additionally, the values derived from each rule are normalized to a unit

vector. This is performed so that the results of all rules, when combined with their

behavior archetype weight fall within a [0.0...1.0] interval. The second summation

functions similarly to the first. It addresses behavior rules 9 and 10 which are impor-

tant for UAV safety. These rules are normalized to a vector of length 2. This is done

to allot more behavioral influence, regardless of evolutionary attributes, to the safety

rules.

Other potential ways to combined the rules include just adding their weighted

components without normalizing the rule based upon its length. When the rules are

summed without prior normalization, rules with longer vector results have undo in-

fluence upon the UAVs next behavior. That is to say, if a particular rule returns a

direction vector that is much larger than the others, then it has potentially unwar-

ranted influence upon the system. Without early normalization, the rules with longer

resulting vectors tend to overwhelm the more subtle rules.

5.4 Simulation Characteristics

5.4.1 Speed Normalization. After the various behavioral rules have been

summed together, the overall length does not necessarily reflect evolvable speed desires

for the system. For this reason, the next direction has its speed normalized to a weight

associated with each behavior archetype. This is performed in the Equation (5.32).

U.D′
new =

U.Dnew
(U.BA.W9+1)

2
U.MaxSpeed

U.Dnew.length
(5.32)

Rules nine and ten, evasion and obstacle avoidance, Equations (5.24) and

(5.30), are hardwired to a value double the maximal possible for other rules. This

gives the safety rules universal applicability without forcing the system to indepen-

118

dently develop weights reflecting their necessity when combined with the other rules.

This simplifies the behavior representation and allows it to potentially evolved faster.

5.4.2 Motion. In much the same is in [46], the motion of the UAVs model

that of Predators [81]. In this regard, the newly desired direction is truncated to

within a turn limit of ±3 degrees per second. This turn rate is artificially lower than

the maximal turn rate, ±20 degrees per second, according to [46]. Experimentally,

the lower turn rate results in less chaotic motion.

First, the next direction is limited to within ±3 degrees by Equation (5.33).

This provides a way of mapping the next desired direction to a more feasible one.

U.Dcorrected =




(cos(∠(U.D − U.P) + 3) ∗ dist(U.P, U.D′
new), ∠(U.D′

new − U.P) > ∠(U.D − U.P) + 3

sin(∠(U.D − U.P) + 3)) ∗ dist(U.P, U.D′
new)

(cos(∠(U.D − U.P)− 3) ∗ dist(U.P, U.D′
new), ∠(U.D′

new − U.P) < ∠(U.D − U.P)− 3

sin(∠(U.D − U.P)− 3)) ∗ dist(U.P, U.D′
new)

U.D′
new otherwise




(5.33)

Following the truncation to viable angles, the actual speed of the new velocity

must be corrected since U.Dcorrected might not fall within the maximum thrust ca-

pabilities of the UAV. The maximal increase in velocity is computed as the ratio of

thrust to mass in Equation (5.34).

MaxAcel =
maxThrust

mass
(5.34)

Likewise, air resistance is computed as a factor of the coefficient of drag, wing

planform area, air density at a 20,000 ft altitude like that in [46], and the mass of the

aircraft. Additionally, the current deceleration is calculated in a form modified from

that of [46].

119

decel =
Cdρ ∗ dist(U.P − U.D)2s

2mass
(5.35)

With both the maximum acceleration and deceleration determined, the final

length of the next direction vector for each UAV can be calculated.

U.D′
corrected =


 U.Dcorrected

U.MaxSpeed(dist(U.P,U.D)+maxAcel−decel)
dist(U.P,U.Dcorrected) dist(U.P, U.D) > (maxAccel − dec)

U.Dcorrected otherwise




(5.36)

The actual values for UAV performance are grounded as Predators for this

simulation in the following table with values taken from [46].

Symbol Variable Value

mass Mass 1020.6kg
Cd Co. of Drag .009
s wing planform 1.858m2

ρ Air Density .0652691kg/m3

Table 5.3: Predator Flight Characteristics

The specific values for the physical model do not directly influence the opera-

tion of the behavior rules. Rather, the physical model values influence the behavior

archetype values. For example, if the UAV has a high max velocity, the behavior

archetype may prefer a larger minimal separation, rule 4, between the UAVs to bol-

ster evasion, rule 9.

5.4.3 Engagement Modeling. Actual engagement between the UAVs and

targets is modeled using a hitpoint based system [63]. This is in contrast to a prob-

abilistic model for destruction like that used in [64]. Experimentation demonstrated

that a hitpoint based model resulted in more stable results. Additionally, more com-

plex models involving the creation of SAM missiles or similar methods create extra

computation.

120

In essence, each UAV and target have a set number of hit points, H. During

each attack, a UAV or target reduces the hitpoints of the closest opposing target or

UAV in accordance to a damage capacity Dam. Once a UAV or target has zero or less

hitpoints, it is considered destroyed. Equations (5.37) through (5.40) demonstrated

how this is accomplished.

∀U∈U∀t∈T̂ min(dist(U.P, T.p)) < U.Ar ⇒ t.H = t.H − U.Dam (5.37)

∀t∈T̂ t.H ≤ 0 ⇒ t.alive = false (5.38)

∀T∈T∀u∈UT
min(dist(UT .P, T.p) = dist(u.P, T.P) ⇒ u.H = u.H − T.Dam (5.39)

∀u∈Uu.H ≤ 0 ⇒ u.alive = false (5.40)

5.5 Genetic Algorithm Functions and Algorithm

A few particular characteristics of the genetic algorithm (GA) is mathematically

grounded [4] to describe how its operators function. For these particular functions

to operate, they rely upon the representation structure for the behavior matrix and

behavior archetypes described in section 4.3.2. The following equation demonstrates

how these specific attributes are mapped to a series of five bit genes, G, based upon

the number of sets of behavior models for each air craft,B, modeled.

G = {∀b∈B|{∀ba∈b.BA|ba.C1 +ba.C2}∪{∀ba∈b.BA|ba.W1 + ...ba.W9 +ba.R1 + ...+ba.R3}}
(5.41)

Each individual bit within G, can be referenced by number such that each five

bits correspond to a whole value with a behavior representation.

5.5.1 Crossover. Crossover functions similar to a two point crossover [29].

The difference is that there is a two point crossover within the behavior matrix and

a crossover within the behavior archetypes. This operator serves to mix successful

121

archetypes between different solutions. This operator selects two points within the

behavior archetypes of the representation with uniform probability and copies the

material from a secondary solution chromosome into the primary one. Likewise, it

selects two points with a behavior matrix and copies the material from the secondary

solution to the primary one.

First, the crossover points are selected. This is accomplished using uniform

random selection. Points 1 and 2 are used to select the behavior archetype crossover

locations whereas points 3 and 4 are for the behavior matrix locations. Equations

(5.42) through (5.45).

Point1 = 5random(

|B|∑
i=0

|Bi.BA∑
j=0

|{Bi.BAj.C1 + Bi.BAj.C2}) (5.42)

Point2 = 5random(

|B|∑
i=0

|Bi.BA∑
j=0

|{Bi.BAj.C1 + Bi.BAj.C2}) (5.43)

Point3 = 5random(|G|/5−
|B|∑
i=0

|Bi.BA∑
j=0

|{Bi.BAj.C1 + Bi.BAj.C2}) (5.44)

Point4 = 5random(|G|/5−
|B|∑
i=0

|Bi.BA∑
j=0

|{Bi.BAj.C1 + Bi.BAj.C2}) (5.45)

Now that the crossover locations have been defined, a copy of the primary par-

ent’s encoding, GP1, is copied into the child, represented as Gc. The child’s encoding

is then crossed with the second parent’s selected locations, in GP2, in points 1 through

4.

∀|Gc|
i=0 Gc

i =




GP2
i (i < Point1 ∧ i > Point2)∨

(i < Point2 ∧ i > Point1)∨
(i < Point3 ∧ i > Point4)∨

(i < Point4 ∧ i > Point3)

GP1 Otherwise




(5.46)

122

5.5.2 Mutation. Mutation selects either a number of number of bits within

the representation to change upto a maximal neighborhood value, mmax, or it selects

a behavior archetype and associated behavior matrix connections to completely ran-

domize. These function to increase the effective neighborhood of the solutions and

find new characteristics to include into the simulations.

With respect to the first type of mutation, the number of effective mutation

locations is randomly determined. After the scope of mutation is selected, the effective

genes can be selected in Equation (5.47).

m = random(mmax) (5.47)

The locations for mutation are selected by randomly selecting a number of gene

locations from the specific index size. Following their selection, the individual genes

can then be mutated. To ensure non replacement, the various indices for genes is first

converted to a set, I:

I = {i|i ∈ [0..|G|]} (5.48)

Then, a new set corresponding to the specific indices, Im, to mutate is created

by randomly selecting elements in I. Equations (5.49) through (5.51) are repeated

m times to generate the appropriate number of mutations.

i = random(I) (5.49)

I = I − i (5.50)

Im = Im + i (5.51)

Following identification of indices to mutate, actual changes to a genetic encod-

ing, G, are performed.

123

∀|G|i=0Gi =


 −Gi i ∈ Im

Gi Otherwise


 (5.52)

In the second form of mutation, a behavior archetype is selected out of all

available behavior matrices. Then, the weights associated with that archetype in both

the perceptron connection weights and the archetype weights are randomized. The

archetype to randomize is selected out of all available. Following selection, all genes

associated with that archetype are randomized to potentially reinvigorate unused

archetypes.

5.5.3 Generalized algorithm. The general GA algorithm implemented is

quite simple. The population is randomly initialized and then simulated to obtain

fitness values. Since the master, which generates the new solutions to test, operates

passively with regard to the actual simulations, the algorithm is broken into smaller

executing pieces. These pieces are the initialization and the sending the information

for a simulation.

During the initialization phase, the population is simply randomly generated

and the available simulations are placed into a list for assignment, jobs. Following

generation, the algorithm waits until all of the specified simulations have been com-

pleted. Additionally, the master maintains a two dimensional array, S, storing all

fitness scores for the simulations, the sum of fitness for all simulations on particular

individual, and the number of simulations finished for that individual. Each row of

the array corresponds to a particular solution. The first value in each row stores

the running total for that solution’s simulation scores. The second value maintains a

running count of finished simulations. A third value associated with each row stores

the number of simulations that have been assigned. The remaining values store the

individual scores for each simulation. The algorithm also relies upon a specified num-

ber of simulations to perform for each individual, sims. The master also keeps track

of the number of solutions that have been completely assigned, f .

124

Table 5.4:
1 For each solution, i, in the population, P
2 i =new random solution
3 S[0][i] = S[1][i] = S[2][i] = 0
4 for each simulation, j, in sims
5 jobs = jobs + Pi

6 f = 0

Table 5.5: Master Initialization Algorithm

Table 5.6:
1 If |jobs| = 0
2 reply with wait signal
3 Else
4 reply with job and specific scenario name
5 s[2][f] + +
6 if(s[2][f] > sims)
7 f + +
8 s[2][f] + +

Table 5.7: Response from master when client requests a job

After the initialization, the operating clients interact with the master in two

ways: by returning scores to the server and by obtaining new jobs. When the clients

request new work from the master, if jobs is not empty, the master replies with a

message containing the solution encoding and the particular simulation name. These

values allow the client machines to perform simulations. If jobs is empty because there

are no more simulations that can be assigned, the master sends the client machine a

waiting message. Additionally, when the master sends a job, it increments its running

total of jobs waiting to be simulated for each solution.

The final major situation in which the algorithm operates is when the clients

return a value. In these cases, the master can perform a great deal of calculations.

These include the calculation of summed score means and the generation of new

jobs by making new individuals in the GA. Its also important to remember that

the clients send both the score and the simulation number, Numb to indicate the

particular chromosome that was simulated.

125

Table 5.8:
1 s[s[1][Numb]][Numb] = score
2 s[1][Numb]++;
3 if(s[1][Numb])¿sims
4 computer chromosome fitness
5 f −−
6 if(f = 0 ∧ |jobs| = 0 ∧ currentGeneration < maximumGeneration)
8 P = select(P)
9 generate the new population for P
10 for each simulation, j, in sims
11 jobs = jobs + Pj

12 S[0][i] = S[1][i] = S[2][i] = 0
13 else
14 terminate

Table 5.9: Master receiving the results from a particular run

5.6 Summary

This chapter provides the necessary indepth design to understand how the sim-

ulation is constructed. The topics introduced run the range from exactly how each

UAV determines its next direction to the method operation of the system genetic

algorithm. These details offer support to other investigations by recreation of the

system designed in the research.

126

VI. Design of Experiments

Experimentation is necessary to validate the usefulness of the SO design within the

framework of the simulation environment. For this reason the experimentation

addresses each of the identified SO features within Chapter 2.

Number Feature Expression ensured by

1 System attribute with a goal The goal is specified by the GA fitness
function. The system is self-organizing
with respect towards accomplishing the
goal.

2 Made of Lower-Level Com-
ponents

The macro system is composed of UAVs
which serve as lower-level components.

3 Interactions between Agents The design of the agent change functions
forces the agents to influence each other’s
behavior and micro-states

4 Synergistic Performance Essentially a statement about scalability.
This attribute must be demonstrated by
resultant solutions.

5 Locality UAVs have locality ensured by design of
the g function which specifies their sensor
locality.

6 Sans global knowledge UAVs have no a priori knowledge. Like-
wise, the rules systems are not designed
to operated within an environmental tem-
plate. Rather, the system reacts to envi-
ronmental information.

Table 6.1: Listing of how the specific features of self-organization are addressed
within the system.

Experiments with this system are meant to develop the best SO behaviors for

UAVs to destroy a number of targets. In this way, the goal of the system is to

actually address a set of scenarios and specify the best possible behaviors. In this

regard, however, there are many different ways in which the various system attributes

can be configured for the testing. This are discussed in relation to the design of

experiments.

There are two scenarios which are used to gauge the performance and capability

of this UAV system. The first scenario considers UAVs with homogeneous abilities

127

and no explicit communication capability. The second scenario has a sensing UAV

and multiple UCAVs cooperative with explicit communication to destroy targets.

These particular scenarios were selected since there are no easily identified benchmarks

addressing aircraft and target interaction where targets can retaliate.

Additionally, the metrics with which the solutions are defined. These metrics

judge characteristics existing as both genetic algorithm components and performance

indicators as well as measures of simulation behavior performance with regard to each

individual

6.1 Design of Experiments

A mentioned in the introduction, there are many different variables which can be

specified for experimentation. These different variables deal with the individual UAV

models, targets, environment, and the genetic algorithm. To demonstrate approach

efficacy for evolving behavior, changes among the UAV attributes were selected. These

differences, communication, engagement ability and sensor applicability, were identi-

fied to enable evolution when the UAVs have similar abilities or when their abilities

are split between two aircraft types.

The UAV variables that can be changed deal with the distinct modeling decisions

high-lighted in Chapters 4 and 5. Specifically, the modeling implementation desired

for this system includes the physical representation, the communication and sensor

ranges, the engagement abilities, and the behavior architecture settings. Table (6.1)

illustrates the ranges in which the specific values could be altered.

In addition to the UAV values, environmental variables exist that can be altered.

Table (6.1) illustrates the potential range of these variables for testing.

The targets also have distinct attributes which can be different for experimen-

tation. These attributes are essentially the same as those used by the UAVs. They

deal with physical models, potentially address communication, and engagement. The

128

Variable Interval
Mass [0.0...∞]
Coefficient of Drag [0.0...∞]
Wing planform [0.0...∞]
Maximum Thrust [0.0...∞]
Air Density [0.0...∞]
Maximum Turn Rate [0o...360o]
Maximum Communication Range [0.0...∞]
Maximum Sensor Range [0.0...∞]
Maximum Engagement Range [0.0...∞]
Attacking Damage [0.0...∞]
Starting Hit points [0.0...∞]
Maximum behavior archetypes [0...∞]

Table 6.2: UAV specific variables that can be changed in an experiment

Variable Interval
Environment dimensions [0...∞]× [0...∞]
UAV population scenario specific
UAV initial positions scenario specific
Target population scenario specific
Target initial position simulation specific
Obstacle Population [0...∞]
Obstacle locations scenario or simulation specific

Table 6.3: Environment specific attributes for experimentation.

129

intervals in which these values can be set are identical to those attributes illustrated

for UAVs in Table (6.1).

A final series of values which can be varied for experimentation are those for the

genetic algorithm. These values deal with the way in which evolution for the system

is enabled and effected. The values and the intervals win which they can be set are

in Table (6.1).

Variable Interval
Population [0...∞]
Preserved population [0...∞]
crossover rate [0%...100%]
mutation rate [0%...100%]
mutation neighborhood [0%...100%]

Table 6.4: Environment specific attributes for experimentation.

These many different attributes, displayed in Tables (6.1) to (6.1), can be

independently tested for their effect upon simulation.

6.2 Metrics

Before completely describing the scenarios, the desired metrics must be ad-

dressed. There are two different sets of pertinent information which are measured

concerning the evolution of these behavior types: rate of evolutionary improvement

with respect to the fitness function and secondary attributes which support fitness

scores like reconnaissance ability, time to find targets, and time to destroy targets.

The metrics provide a simple way to measure the quality of a solution. These

measures operate upon both the genetic algorithm and individual solution behaviors.

6.2.0.1 GA Metrics. Measures of the GA performance most simply

deal with the improvement of fitness values across time. This is simply considered an

average of the mean scores by generation for each run as in [63,64].

These values can be extracted from system output as it runs.

130

Its worth noting that the mean score of a particular GA at each generation is a

reasonable measure of the system performance due to the variation in reported fitness

scores by each simulation. For example, the following histograph demonstrates the

resulting scores from a particular final solution to the heterogeneous experiment when

evaluated 100 times.

Figure 6.1: Histograph of observed scores for a particular 49th generation hetero-
geneous experiment solution. The vertical line indicates where the approximate mean
occurs.

6.2.0.2 Supporting Metrics. The fitness score based upon destruction

of targets encapsulates three system requirements: reconnaissance of the environment

to find the targets, the time taken to find targets, and the time taken to destroy

targets.

Reconnaissance of the environment can be measured by breaking up the envi-

ronment into 100m× 100m squares and measuring the number of seconds that each

square is completely within the sensor range of a UAV. Measuring reconnaissance in

this fashion demonstrates the likelihood that different locations are searched and the

concentrations of sensor examination. Of most importance, however, is the average

percentage of the environment which is searched before the conclusion of simulation.

One concern about this metric, however, is that the simulation terminates when all

of the UAVs are destroyed, all of the targets are destroyed, or after 3000 simulated

seconds. These termination criteria mean that the final score may be slightly incorrect

if the solution is too effective in destroying the targets.

131

The time taken to find targets is another important metric. It indicates the

approximate time for the system to organize into preferred searching patterns and

actually find the targets. One concern, however, is that measuring the variance in

finding targets increases as simulations increase. This leads to less accurate results.

For this reason, it seems more reasonable to measure the average time to locating the

first target for a simulation rather than each target in sequence.

Finally, the measurement of time taken to destroy the first target indicates the

time taken for the UAV system to reorganize their formation and successfully destroy

the target. Like the time taken to find targets, only destruction of the first target

seems to indicate the most reliable results. This is due to increases in variance as

successive targets are destroyed.

Due to the communication protocol used for the system to the increased com-

putation time required for measuring the supporting metrics, these values are not

collected while the system operates in its normal evolving mode. Rather, these values

must be collected with after-the-fact reexamination and simulation. For this reason,

these values are not computed for every solution considered by the system.

These particular metrics are used to justify scalability claims against the best

solutions from the different system runs.

6.3 Homogeneous UAV Experiment

This experiment seeks to evolve the best set of behaviors within the systems

framework for an engagement between a set of homogeneous UAVs and targets. Al-

ternative testing scenarios could deal with the amount of sensor coverage, quickest

location of targets, or the most stable formations. However, modeling search and

attack particularly was deemed most useful to better take advantage of the simple

fitness function.

6.3.1 Environment. The environment, since it is the theater in which

the other experiment components interact, is defined first. The environment is a

132

80km×80km square with positions described in a Cartesian range of [0.0..800.0] by

[0.0..800.0]. With respect to the visualizations, the origin is the northwest corner

similarly to [63, 64]. The dimensions represent a correspondence of 100m to each

whole number value in the environment’s representation. For example, a change from

horizontal coordinate 75 to 76 is representative of 100m difference.

6.3.2 UAV Characteristics. The UAVs have specific limitations to their

abilities. These limitations follow in Table (6.3.2).

Quality Value

Max Behavior Archetypes 3
Sensor Range 5km
Explicit Communication Range 0km (none)
Engagement Range 1km
Maximum Speed 77.16 m

sec

Initial hitpoints 10

Maximum damage 1 hp
sec

Table 6.5: Homogeneous Experiment UAV Characteristics

6.3.3 Target Characteristics. The targets have similar characteristics to the

UAVs while being stationary. The following values reflect the desired final outcome.

Quality Value

Sensor Range 30km
Explicit Communication Range 0km (none)
Engagement Range 2km
Maximum Speed 0 m

sec

Initial hitpoints 10

Maximum damage 1 hp
sec

Table 6.6: Homogeneous Experiment Target Characteristics

There are two major things to extract from the target characteristics when

compared to the UAVs- the targets have twice the engagement range and that they

are stationary.

133

Additionally, the number UAVs and targets is pertinent to this scenario. In this

respect, the number of UAVs tested is varied to test scalability. However, the UAV

and target populations are kept in the same ratio of 10:3. Table (6.3.3) demonstrates

the particular populations at which the simulations operate.

When UAV Pop Target Pop

Generations 0-49 10 3
Generation 50-59 20 6
Scalability 30 9

Table 6.7: Homogeneous Experiment Population Characteristics

The population for the system runs is intentionally limited. As the populations

increase, the time required for each simulation to complete grows in approximately

a linear fashion. This effect is demonstrated in the next chapter. The population of

UAVs and targets was limited to enable faster system execution. However, in assessing

the scalability of best solutions, this number is increased slightly.

6.3.4 Initial positions. The UAVs have a centralized starting location with

random initial bearings. Three different initial positions are defined. The first repre-

sents the positions for all simulations in generations 0-49 and uses ten UAVs against

3 targets. The next uses 20 UAVs against 6 targets and operates for all simulations in

generations 50 through 59. The final initial position describes 30 UAVs and 9 targets

and is used in measurements of scalability.

The positions of the UAVs were selected to place the UAVs at the north western

edge of the environment and within 4.5km to each nearest neighbor. This proximity

facilitates searching behaviors by allowing the UAVs to already be in a formation.

Coupled with the random initial bearing, the UAVs, at the beginning of the scenario,

are already in some sort of formation. The use of random initial directions is intended

to add an unpredictable quality to the starting formations and interactions of the

UAVs.

134

Vehicle Position Bearing

UAV 1 (25, 45) Random
UAV 2 (25, 90) Random
UAV 3 (25, 135) Random
UAV 4 (25, 180) Random
UAV 5 (25, 225) Random
UAV 6 (64, 67.5) Random
UAV 7 (64, 112.5) Random
UAV 8 (64, 157.5) Random
UAV 9 (64, 202.5) Random
UAV 10 (64, 247.5) Random

Table 6.8: Homogeneous Experiment, Initial UAV Positions and Bearings for gen-
erations 0-49

Vehicle Position Bearing

UAV 1 (25, 186.25) Random
UAV 2 (25, 231.25) Random
UAV 3 (25, 276.25) Random
UAV 4 (25, 321.25) Random
UAV 5 (25, 366.25) Random
UAV 6 (25, 411.25) Random
UAV 7 (25, 456.25) Random
UAV 8 (25, 501.25) Random
UAV 9 (25, 546.25) Random
UAV 10 (25, 591.25) Random
UAV 11 (64, 208.75) Random
UAV 12 (64, 253.75) Random
UAV 13 (64, 298.75) Random
UAV 14 (64, 343.75) Random
UAV 15 (64, 388.75) Random
UAV 16 (64, 433.75) Random
UAV 17 (64, 478.75) Random
UAV 18 (64, 523.75) Random
UAV 19 (64, 568.75) Random
UAV 20 (64, 613.75) Random

Table 6.9: Homogeneous Experiment, Initial UAV Positions and Bearings for gen-
erations 50-59

135

As the number of UAVs used in the simulation are increased to test scalability,

UAV positions are settled to a more centralized position as can be seen in tables

(6.3.4) and (6.3.4).

The setup of UAVs described in Table (6.3.4) is not used for actual system

runs. Rather, it is used to measure the scalability of 60th generation solutions.

The use of random initial positions for the targets simulates their unknown lo-

cations within the environment. Additionally, their placement away from the borders

of the environment require the UAV systems search the interior for target locations

rather than simply stick to the environment border obstacles. The initial positions of

the UAVs are demonstrated in figures (6.2) through (6.4).

Figure 6.2: Graphical depiction of the initial positions for experiment 1 in genera-
tions 0-49.

136

Vehicle Position Bearing

UAV 1 (25, 73.75) Random
UAV 2 (25, 118.75) Random
UAV 3 (25, 163.75) Random
UAV 4 (25, 208.75) Random
UAV 5 (25, 253.75) Random
UAV 6 (25, 298.75) Random
UAV 7 (25, 343.75) Random
UAV 8 (25, 388.75) Random
UAV 9 (25, 433.75) Random
UAV 10 (25, 478.75) Random
UAV 11 (25, 523.75) Random
UAV 12 (25, 568.75) Random
UAV 13 (25, 613.75) Random
UAV 14 (25, 658.75) Random
UAV 15 (25, 703.75) Random
UAV 16 (64, 96.25) Random
UAV 17 (64, 141.25) Random
UAV 18 (64, 186.25) Random
UAV 19 (64, 231.25) Random
UAV 20 (64, 276.25) Random
UAV 21 (64, 321.25) Random
UAV 22 (64, 366.25) Random
UAV 23 (64, 411.25) Random
UAV 24 (64, 456.25) Random
UAV 25 (64, 501.25) Random
UAV 26 (64, 546.25) Random
UAV 27 (64, 591.25) Random
UAV 28 (64, 636.25) Random
UAV 29 (64, 681.25) Random
UAV 30 (64, 726.25) Random

Table 6.10: Homogeneous Experiment, Initial UAV Positions for high scalability
test with 30 UAVs

Targets Position Bearing

Targets 1-3 Random in
range [80..720]×
[80..720]

(0,0)

Table 6.11: Homogeneous Experiment, Initial Target Positions and Bearings for
generation 0-49

137

Targets Position Bearing

Targets 1-6 Random in
range [80..720]×
[80..720]

(0,0)

Table 6.12: Homogeneous Experiment, Initial Target Positions and Bearings for
generation 50-59

Targets Position Bearing

Targets 1-9 Random in
range [80..720]×
[80..720]

(0,0)

Table 6.13: Initial Target Positions and Bearings for 30 UAV scalability measure-
ment scenario

6.3.5 Adaptive Scenarios. By changing the scenarios that the genetic algo-

rithm uses for fitness evaluations, useful traits are evolved into the solutions. In this

experiment, the scenarios vary according to the engagement range of the targets and

eventually the number of UAVs and targets simulated. By altering these attributes,

the UAVs first learn to search and find targets before adapting to destroying more

difficult targets. The larger simulations for the final 10 generations also enable the

system to evolve more scaleable behaviors. The static schedule of the scenarios are

listed in table (6.3.5).

Scenario Generations Effect

Scenario 1 0-9 Target Engagement range = 0.4km
Scenario 2 10-19 Target Engagement range = 0.8km
Scenario 3 20-29 Target Engagement range = 1.2km
Scenario 4 30-39 Target Engagement range = 1.6km
Scenario 5 40-49 Target Engagement range = 2km
Scenario 6 50-59 UAV Presence is doubled

Table 6.14: Ex 1, Ex 1 Adaptive Scenario Qualities

6.3.6 GA Values. The genetic algorithm is run for 60 generations in accor-

dance with the scenario schedule. The population for each generation is 100 and the

20 best solutions are carried over between each generation. The crossover rate is set at

138

Figure 6.3: Graphical depiction of the initial positions for experiment 1 in genera-
tions 50-59.

10% and the mutation rate is 90%.The allowed neighborhood for mutation is approx-

imately 5% the solution representation. The values selected for the genetic algorithm

were derived while constructing the system and while tweaking the algorithm.

Each UAV is modeled using the same behavior attributes for individual simu-

lations. This means that all UAVs rely upon the same behavior matrix and behavior

archetypes for their behavior.

6.3.7 Expected Outcome. With the initial positions and UAV / Target

characteristics the way they are, it seems most likely that the UAVs and would evolve

effective searching behavior in within the first 30 generations. It seems most likely

139

Figure 6.4: Graphical depiction of the initial positions for use in scalability assess-
ments.

that the UAVs would use larger spread out formations to locate targets similarly to

the behavior described by Schlecht to find targets [72]. In the first 30 generations,

since it is possible for a single UAV to destroy a target, it is unlikely that cooperative

attack behaviors be evolved. However in the last 20 generations of each system run,

it seems likely that they UAVs evolve a more cooperative attack strategy that would

bolster their reconnaissance behaviors. At the end of the simulation, they UAVs

should be capable of destroying at least 2 targets in each simulation 50% of the time

(a resultant mean fitness greater than 150).

With respect to scalability, the solutions should increase score the same amount

in which their reconnaissance ability improves. What is meant by this is that the

140

performance of the solutions increases at the same amount that their reconnaissance

ability increases. This would demonstrate a correlative relationship between locating

targets prior to their destruction.

To derive significant results, the system is run 30 times.

6.4 heterogeneous UAV Experiment

This experiment again pits a ratio of 10 UAVs against 3 targets. The difference

in this experiment is that that the majority of the UAVs have limited sensing capa-

bilities while the other have greater sensing abilities to compensate. In this vein, 10%

of the UAVs are equipped with a 10km range sensor suite and no attack capability

whereas the others 90% are only be able to sense objects within 1.5km and attack

targets.

6.4.1 Environment. The environment is identical to that in experiment 1.

The environment is a 80km×80km square with positions described in a Cartesian

range of [0..800] by [0..800]. And again, with respect to the visualizations, the origin

is the north western corner similarly to [63,64].

6.4.2 UAV Characteristics. There are two specific types of vehicles that

represent the UAVs: sensor UAVs and UCAVs. The sensor UAV capabilities follow

in Table (6.4.2) whereas the UCAV abilities are in Table (6.4.2).

Quality Value

Max Behavior Archetypes 3
Sensor Range 10km
Explicit Communication Range 10km
Engagement Range 0km (none)
Maximum Speed 77.16 m

sec

Initial hitpoints 10

Maximum damage 0 hp
sec

Table 6.15: heterogeneous Experiment Sensing UAV Characteristics

The UCAVs are intended as strike aircraft. Their capabilities follow.

141

Quality Value

Max Behavior Archetypes 3
Sensor Range 1.5km
Explicit Communication Range 1.5km
Engagement Range 1km
Maximum Speed 77.16 m

sec

Initial hitpoints 10

Maximum damage 1 hp
sec

Table 6.16: heterogeneous Experiment UAV Characteristics

This experiment also varies the populations of the UAVs and targets for sim-

ulation. Like experiment 1, the population of targets to UAVs is held in a constant

ratio. This enables direct comparison between the fitness score results for each size

of scenario. Table (6.4.2)

When Sensor UAV
Pop

Target Pop

Generations 0-49 1 9 3
Generation 50-59 2 18 6
Scalability 3 27 9
Behavior Demo I 10 90 30
Behavior Demo II 100 900 300

Table 6.17: Homogeneous Experiment Population Characteristics

As in the homogeneous experiment, the system uses a very small population

for its runs. This enables faster system execution. Additionally, the resulting best

solutions at the end of system runs are exposed to an additional scalability assessment

with the scalability level simulations. Finally, the very best performing solution from

30 system runs is assessed for individual behavior with the extremely large behavior

demos.

6.4.3 Target Characteristics. The targets have characteristics identical to

those in experiment one. This includes population ratios.

142

6.4.4 Initial positions. The UAVs have a centralized starting location with

random initial bearings. The targets also have random starting locations. With

respect to the actual simulations the starting positions for the various population

sizes are in tables (6.4.4) through (6.4.4).

Vehicle Position Bearing

Sense UAV (40, 40) Random
UCAV 1 (25, 55) Random
UCAV 2 (35, 55) Random
UCAV 3 (45, 55) Random
UCAV 4 (55, 55) Random
UCAV 5 (55, 45) Random
UCAV 6 (55, 35) Random
UCAV 7 (55, 25) Random
UCAV 8 (30, 40) Random
UCAV 9 (40, 30) Random

Table 6.18: Initial UAV Positions and Bearings for generations 0-49 in heteroge-
neous experiment.

The positions of the UAVs were selected to place the UAVs at the north western

edge of the environment and within 1km to each nearest neighbor. Coupled with the

random initial bearing, the UAVs, at the beginning of the scenario, are already be in

some sort of formation. The use of random initial directions is intended to add an

unpredictable quality to the starting formations and interactions of the UAVs.

As the number of UAVs increases, the UAVs are moved toward a more cen-

tralized position. Additionally, the positions are arranged similarly to that in Table

(6.4.4) by having 1 sensor UAV surrounded by a set of 9 UCAVs. These 10 UAV

sets are likewise spaced 90 distance units from each other. This allows for explicit

communication between the sensor UAVs.

With the 1000 UAV and 300 target simulation, the positions are chosen ran-

domly within a margin to the border obstacles. The decision to utilize random posi-

tions over more structure is due to the inability for a formation with the same spacing

143

Vehicle Position Bearing

Sense UAV 1 (32.1, 355) Random
Sense UAV 2 (32.1, 445) Random
UCAV 1 (25, 344.355) Random
UCAV 2 (25, 351.45) Random
UCAV 3 (25, 358.55) Random
UCAV 4 (25, 365.65) Random
UCAV 5 (32.1, 347.9) Random
UCAV 6 (32.1, 362.1) Random
UCAV 7 (39.2, 351.45) Random
UCAV 8 (39.2, 358.55) Random
UCAV 9 (46.1, 355) Random
UCAV 10 (25, 441.45) Random
UCAV 11 (25, 448.55) Random
UCAV 12 (25, 455.65) Random
UCAV 13 (25, 462.75) Random
UCAV 14 (32.1, 437.9) Random
UCAV 15 (32.1, 455.65) Random
UCAV 16 (39.2, 448.55) Random
UCAV 17 (39.2, 455.65) Random
UCAV 18 (46.1, 445) Random

Table 6.19: Initial UAV Positions and Bearings for generations 0-49 in heteroge-
neous experiment.

144

Vehicle Position Bearing

Sense UAV 1 (32.1, 310.15) Random
Sense UAV 2 (32.1, 400.15) Random
Sense UAV 1 (32.1, 490.15) Random
UCAV 1 (25, 299.5) Random
UCAV 2 (25, 306.6) Random
UCAV 3 (25, 313.7) Random
UCAV 4 (25, 320.8) Random
UCAV 5 (32.1, 303.05) Random
UCAV 6 (32.1, 317.25) Random
UCAV 7 (39.2, 306.6) Random
UCAV 8 (39.2, 313.7) Random
UCAV 9 (46.1, 310.15) Random
UCAV 10 (25, 389.05) Random
UCAV 11 (25, 396.6) Random
UCAV 12 (25, 403.7) Random
UCAV 13 (25, 410.8) Random
UCAV 14 (32.1, 393.05) Random
UCAV 15 (32.1, 407.25) Random
UCAV 16 (39.2, 396.6) Random
UCAV 17 (39.2, 403.7) Random
UCAV 18 (46.1, 400.15) Random
UCAV 19 (25, 479.6) Random
UCAV 20 (25, 486.6) Random
UCAV 21 (25, 493.7) Random
UCAV 22 (25, 500.8) Random
UCAV 23 (32.1, 483.05) Random
UCAV 24 (32.1, 497.25) Random
UCAV 25 (39.2, 486.6) Random
UCAV 26 (39.2, 493.7) Random
UCAV 27 (46.1, 490.15) Random

Table 6.20: Initial UAV Positions and Bearings for heterogeneous experiment scal-
ability assessment.

145

Vehicle Position Vehicle Position Vehicle Position

Sense UAV 1 (32.1, 40.15) Sense UAV 2 (32.1, 120.15) Sense UAV 3 (32.1, 200.15)
Sense UAV 4 (32.1, 280.15) Sense UAV 5 (32.1, 360.15) Sense UAV 6 (32.1, 440.15)
Sense UAV 7 (32.1, 520.15) Sense UAV 8 (32.1, 600.15) Sense UAV 9 (32.1680.15)
Sense UAV 10 (32.1, 760.15)
UCAV 1 (25, 29.5) UCAV 2 (25, 36.6) UCAV 3 (25, 43.7)
UCAV 4 (25, 50.8) UCAV 5 (32.1, 33.05) UCAV 6 (32.1, 47.25)
UCAV 7 (39.2, 36.6) UCAV 8 (39.2, 43.7) UCAV 9 (46.3, 40.15)
UCAV 10 (25, 109.5) UCAV 11 (25, 116.6) UCAV 12 (25, 123.7)
UCAV 13 (25, 130.8) UCAV 14 (32.1, 113.05) UCAV 15 (32.1, 127.25)
UCAV 16 (39.2, 116.6) UCAV 17 (39.2, 123.7) UCAV 18 (46.3, 120.15)
UCAV 19 (25, 189.5) UCAV 20 (25, 196.6) UCAV 21 (25, 203.7)
UCAV 22 (25, 210.8) UCAV 23 (32.1, 193.05) UCAV 24 (32.1, 207.25)
UCAV 25 (39.2, 196.6) UCAV 26 (39.2, 203.7) UCAV 27 (46.3, 200.15)
UCAV 28 (25, 269.5) UCAV 29 (25, 276.6) UCAV 30 (25, 283.7)
UCAV 31 (25, 290.8) UCAV 32 (32.1, 273.05) UCAV 33 (32.1, 287.25)
UCAV 34 (39.2, 276.6) UCAV 35 (39.2, 283.7) UCAV 36 (46.3, 280.15)
UCAV 37 (25, 349.5) UCAV 38 (25, 356.6) UCAV 39 (25, 363.7)
UCAV 40 (25, 370.8) UCAV 41 (32.1, 353.05) UCAV 42 (32.1, 367.25)
UCAV 43 (39.2, 356.6) UCAV 44 (39.2, 363.7) UCAV 45 (46.3, 360.15)
UCAV 46 (25, 429.5) UCAV 47 (25, 436.6) UCAV 48 (25, 443.7)
UCAV 49 (25, 450.8) UCAV 50 (32.1, 433.05) UCAV 51 (32.1, 447.25)
UCAV 52 (39.2, 436.6) UCAV 53 (39.2, 443.7) UCAV 54 (46.3, 440.15)
UCAV 55 (25, 509.5) UCAV 56 (25, 516.6) UCAV 57 (25, 523.7)
UCAV 58 (25, 530.8) UCAV 59 (32.1, 513.05.05) UCAV 60 (32.1, 527.25)
UCAV 61 (39.2, 516.6) UCAV 62 (39.2, 523.7) UCAV 63 (46.3, 520.15)
UCAV 64 (25, 589.5) UCAV 65 (25, 596.6) UCAV 66 (25, 603.7)
UCAV 67 (25, 610.8) UCAV 68 (32.1, 593.05) UCAV 69 (32.1, 607.25)
UCAV 70 (39.2, 596.6) UCAV 71 (39.2, 603.7) UCAV 72 (46.3, 600.15)
UCAV 73 (25, 669.5) UCAV 74 (25, 676.6) UCAV 75 (25, 683.7)
UCAV 76 (25, 690.8) UCAV 77 (32.1, 673.05) UCAV 78 (32.1, 687.25)
UCAV 79 (39.2, 676.6) UCAV 80 (39.2, 683.7) UCAV 81 (46.3, 680.15)
UCAV 82 (25, 749.5) UCAV 83 (25, 756.6) UCAV 84 (25, 763.7)
UCAV 85 (25, 770.8) UCAV 86 (32.1, 753.05) UCAV 87 (32.1, 767.25)
UCAV 88 (39.2, 756.6) UCAV 89 (39.2, 763.7) UCAV 90 (46.3, 760.15)

Table 6.21: Initial UAV Positions and Bearings for heterogeneous experiment 100
UAV behavior assessment.

146

as in Tables (6.4.4) through (6.4.4). Additionally, the random locations still allow

the UCAVs to likely be within the communication range of a sensor UAV.

Vehicle Position Bearing

Sensor UAVs 1-100 Random in({[0..55] or
[745..800]}, [0..800])
or ([0..800],{[0..55] or
[745..800]})

Random

UCAVs 1-900 Random in({[0..55] or
[745..800]}, [0..800])
or ([0..800],{[0..55] or
[745..800]})

Random

Table 6.22: Initial UAV Positions and Bearings for generations 1000 UAV Simula-
tion

Targets Position Bearing

All Targets Random in
range [80..720]×
[80..720]

(0,0)

Table 6.23: Ex 2, Initial Target Positions and Bearings

The distribution and initial position of the targets parallels that in experiment

1.

6.4.5 Adaptive Scenarios. Like in the first experiment, adapting the sce-

narios used by they genetic algorithm alters the traits in the resultant solutions. In

this experiment, the scenarios vary according to the engagement range of the targets.

Again, by altering this attribute, the UAVs first learn to search and find targets be-

fore adapting towards destroying more difficult targets. The schedule of scenarios and

their corresponding rate of target engagement range mirrors that of experiment 1.

Also similar to the first experiment, the final 10 generations attempt to evolve

scaleable behaviors by increasing the number of UAVs and targets.

6.4.6 GA Values. The genetic algorithm is run for 60 generations in ac-

cordance with the scenario schedule. The population for each generation is 100 chro-

147

Figure 6.5: Graphical depiction of the initial positions for experiment 2 in genera-
tions 0-49 and 3 targets.

mosomes and the 20 best solutions are carried over between each generation. The

crossover rate is set at 10% and the mutation rate is 90%. The allowed neighborhood

for mutation is approximately 5% of the solution representation. These values were

derived from tweaking the system while it was constructed.

It is important to note that since there are two distinct types of UAVs in this

experiment that the solution representation is double the size that of the first exper-

iment. This allows the sensing UAV to have its own behavior matrix and behavior

archetypes while the UCAVs have their own such autonomy.

148

Figure 6.6: Graphical depiction of the initial positions for experiment 2 in genera-
tions 50-59 with 20 UAVs and 6 targets.

6.4.7 Expected Outcome. The use of explicit communication allows im-

proved UAV capability over the first experiment. In this case, since explicit commu-

nication allows a UAV to signal both its own traits and the location of other targets,

more explicitly cooperative behavior should arise. It is expected that the sensing

UAV operates in a purely passive reconnaissance role and signal the location of tar-

gets to the UCAVs. The UCAVs, on the other hand, should operate within the sensor

envelope of the sensing UAV and aggressively attack communicated targets.

With respect to scalability evolved in generations 50-59, the different sets of

UAVs should operate in groups of ten. A single sensor UAV should operate in con-

junction with 9 UCAVs to independently search and destroy targets. The behavior

149

Figure 6.7: Graphical depiction of the initial positions for use in scalability assess-
ments with 30 UAVs and 9 targets.

should evolve some form of repulsion whereby the sensor UAVs guide the UCAVs

away from other sensor UAVs.

6.5 Summary

This chapter describes the experiments and the metrics used in this system. To

investigate SO behavior applicability, this system evolves for use with both homoge-

neous and heterogeneous systems. This behavior is intended to be examined for its

ability to destroy targets as well as its scalability. Additionally, the metrics used to

judge this system are also explained. These metrics address both the evolving simu-

150

Figure 6.8: Graphical depiction of the initial positions for use with 100 UAVs and
30 targets.

lation performance with the solution fitness as well as more individual traits that can

explain scalability.

151

Figure 6.9: Graphical depiction of the initial positions for use with 1000 UAVs and
300 targets.

152

VII. Analysis of Experiment Results

After much testing and analysis, the general conclusions for behavior responding

to individual scenarios is presented. In addition, the observed scalability of

solutions is discussed.

7.1 Homogeneous UAV Experiment

The behavioral results for the homogeneous experiment did not behave as ex-

pected. In fact, the homogeneous experimental scores were likewise less than expected.

The expected behavior was completely different than expected and resorts to small

formations and hyper-aggression [63].

7.1.1 GA Fitness. The genetic algorithm displays expected performance

with respect to increases in fitness score. This is shown through examination of the

plotted mean and best scores.

Of particular interest in the plot of mean and best scores (Figure (7.1)) is the

large decrease in obtained average and maximal scores when the scenario difficulty

changes according to the adaptive scenario schedule. Even after ten generations of

evolution with the new difficulty, solution fitness appears bounded by the constraints

imposed by scenario difficulty. The apparent effects of this difficulty constraint are

also reinforced by the similar drop in best fitness which occurs at the same time as

the mean drops. This is better demonstrated when examining the change between

fitness scores in Figure (7.2).

Analysis upon all individual scores by generation for all runs indicates a reason-

able level of predictable performance. This analysis was performed using a Kruskal-

Wallis analysis of varianceon ordinally ranked scores.

Examination of the best scores indicates that the diverse population frequently

increases solution performance in each scenario within the schedule rather quickly.

In contrast, the more gradual increase in mean fitness score for each scenario diffi-

culty level indicates the reproduction of better performing solutions through out the

153

Figure 7.1: Mean and Best score by generation for all runs. Vertical lines mark
changes in the scheduled scenario. Mean score standard deviation is indicated by the
intervals

Figure 7.2: Experiment 1 Change in fitness for all generations. Vertical lines mark
changes in scenario difficulty. Standard deviation in mean score change is indicated
by the interval bards.

154

Figure 7.3: Kruskal Wallis ANOVA upon all individuals by generation for all runs.
Vertical lines mark changes in the scheduled scenario.

population. The results of the Kruskal-Wallis analysis of variance suggest that the

run scores are very similar in performance when the scenario difficulty is increased.

However, as expected, the similarity between the simulation scores are dramatically

lower immediately after a difficulty increase.

7.1.2 Scalability. Generations 50 through 59 in each system run are used

to develop behavior scalability. The fitness scores do not explicitly indicate the per-

formance of simulation specific metrics (Section 6.3.2). However, these metrics can

be used to describe the scalability of each run’s best solution. To demonstrate the

general scalability of results, the best solutions from each of the 30 runs is tested

against the 10 UAV, 20 UAV, and 30 UAV experiment positions as defined in Section

2.1.4 for 50 simulations.

In general, as the number of UAVs increase the fitness scores tend to increase.

However, that increase is not linear. Rather, it appears that as the total population

of UAVs and targets increases the relative value of UAVs decreases. It is important to

155

Generation Population Mean Best Kruskal-Wallis ANOVA

0 128.3012667 293.82 0.00697762
1 193.0768667 293.92 0.046881947
2 222.4740667 295.96 0.065922053
3 237.6773 300 0.090914549
4 245.3651867 300 0.068804802
5 244.9003933 300 0.064464664
6 248.2189067 300 0.035662469
7 249.76204 300 0.048821456
8 253.2292733 300 0.050211839
9 250.88244 300 0.03455364
10 250.30234 300 0.03581339
11 252.9910733 300 0.041057994
12 251.1926 300 0.048520454
13 251.8564533 300 0.03422998
14 252.34912 300 0.043682061
15 254.7097533 300 0.026608585
16 252.5260667 300 0.024446408
17 252.8794333 300 0.029463128
18 253.5598067 300 0.030027517
19 252.02312 300 0.029714656
20 221.3996333 278.42 0.036149794
21 226.2011867 281.66 0.041907113
22 225.1637467 279.8 0.029195271
23 226.6753333 280.28 0.041371646
24 227.0877467 280.12 0.032980101
25 228.80094 283.04 0.026377848
26 229.7073867 285.86 0.02608254
27 227.43092 283.5 0.034501547
28 231.7007733 283.58 0.02065302
29 229.8536 279.16 0.013898025

Table 7.1: Results for homogeneous UAV experiment according to all 30 runs for
the first 30 generations. The horizontal lines mark the change of scenario difficulty.

156

Generation Population Mean Best Kruskal-Wallis ANOVA

30 120.5817933 189.36 0.095626691
31 131.3431 183.1 0.102598209
32 136.19062 185.94 0.087422522
33 140.2147 193.72 0.08384594
34 142.3665933 192.54 0.07107589
35 142.0839067 193.7 0.05858891
36 143.6901133 195.7 0.050291275
37 144.3909467 202.48 0.042961529
38 145.0020267 198.38 0.036032669
39 144.5813933 196.5 0.044538155
40 34.89792 101.32 0.097381078
41 50.46422667 119.18 0.107940116
42 64.00297333 128.32 0.098477627
43 71.08855333 122.12 0.106097529
44 75.46395333 135.18 0.064832288
45 77.38448667 128.48 0.042724678
46 79.03668667 123.3 0.047643831
47 80.43426 127.48 0.02662861
48 81.19456667 127.78 0.034199573
49 82.22742667 126.6 0.026764531
50 62.66723333 141.3 0.239617228
51 80.73173333 148 0.248273454
52 87.586 152.2 0.176361463
53 91.95043333 155.1 0.109504206
54 95.50783333 155.7 0.100962659
55 98.08893333 156.1 0.094690638
56 99.54506667 155.2 0.088481339
57 101.0826667 159.7 0.068195741
58 102.2235 157 0.04350212
59 102.4037 162.6 0.022775377

Table 7.2: Results for homogeneous UAV experiment according to all 30 runs for
the last 30 generations. The horizontal lines mark the change of scenario difficulty.

157

remember that this performance is for 10 through 30 UAVs. The mean performance

of the 30 best solutions is plotted in Figure (7.4).

Despite the increase in performance, as the total population of both targets

and UAVs increase, the performance of this system falls. With large numbers of

targets, the probability that targets exist with an overlapping target engagement range

increases. When multiple targets engagement ranges overlap, both targets can attack

UAVs simultaneously. Simultaneous attack results in increased UAV attrition against

with less targets being destroyed. This particular behavior, though not simulated

explicitly for this experiment due to runtimes, is specifically observable with the

heterogeneous experiment results. This particular behavior seems demonstrated when

the probability for destroying targets is examined in Figure (7.5).

The general effectiveness of target destruction increases until about two thirds

of the targets are destroyed. After this point, higher population simulations diminish

in ability. One potential reason for the lessened effectiveness is due to the increased

number of overlapping target engagement areas. Another possible reason for this

reduction in fitness score is that the larger populations of UAVs enter into formations

which are too large to maximize their reconnaissance abilities. In the larger and

denser formations, the UAVs have more difficulty locating targets while their ability

to destroy targets increases. The smaller formation argument, however, appears to be

incorrect since the overall area searched increases with UAV population size. These

values are displayed in Table (7.1.2)

UAV Population Percent of Environment Re-
connoitered

10 UAVs 48%
20 UAVs 58%
30 UAVs 65%

Table 7.3: Percent of Environment searched by UAVs.

158

Figure 7.4: Experiment 1 fitness scalability. Standard deviation is indicated by the
intervals.

Figure 7.5: The probability of target destruction is plotted against the percentage
of targets destroyed for 10 UAVs, 20 UAVs, and 30 UAVs. Standard deviations are
indicated by the interval bars.

159

All in all, the behaviors evolved by this system are scaleable. Though they

suffer from diminishing returns with respect to UAV population, the UAV behavior

successfully hunts down and destroys targets with larger populations.

7.1.3 Selected Solutions. Contrary to expected output, the typical final

evolved behavior for the homogeneous experiment did not use multiple behavior types.

Rather, typically the most frequent set of behavior relied upon a single or two fairly

similar behavior archetypes that emphasize extremely close formations and hyper-

aggression [63]. Basically, the UAVs operate in the smallest formation they can while

attacking targets on sight.

This set of behaviors appears to be in response to the need to cooperatively

attack the targets. Simply put, while the targets have superior engagement range,

the UAVs must simultaneous attack a single target for any chance to succeed. If the

UAVs were in a larger formation, then they need to shrink their formation prior to

attack. In this particular case, it appears that by maintaining a smaller formation,

what the UAVs give up in regard to reconnaissance capability, they gain with respect

to formation coordination and behavior fitness.

As an example, the best final solution is analyzed for its features in the following

passages. This solution, from the second system run, scored approximately 162 out

of 300. It has only two behavior archetypes that function. Examples of when they

are applied are displayed in Figure (7.6).

From the archetype figure, it is clear that the first behavior archetype operates

when ever the UAV does not see a target. However, when it either directly sees a

target or a peer that sees a target, it relies upon the second behavior archetype. In

this sense, the second behavior archetype is functions as the attack behavior and

whereas the first is used for searching. The pertinent aspects of this encoding are

displayed in Table (7.7).

160

Figure 7.6: The particular behavior archetypes used for different situations are
indicated by color. Red stands for the first behavior archetype, green indicates the
second is selected. This image assumes the section occurs with respect to a normal
UAV in this experiment. Additionally, allied UAVs, indicated by the ‘X’s are located
at (420, 380), (400, 440), (400, 480), and (400, 520). Targets, indicated by the ¦s, are
located at (400, 400) and (600, 600).

The primary behavior causes the UAV to prefer small clustering behaviors and

small formations. This behavior does not demonstrate any specially evolved traits.

An example image of the closer formations can be seen in Figure (7.8).

The attacking behavior, however, does demonstrate an exceptional characteris-

tic. When a UAV detects a target it prefers to orbit the target rather than attack.

This can be seen in the lower right hand corner of Figure (7.9).

With this behavior, UAVs tends to attack when other rules cause them to move

closer to targets. For example, UAVs attack targets by following their alignment

rule or the clustering rule. When UAVs are solitary, they are not influenced by rules

dealing with other UAVs. As such, attacking UAVs enter into orbiting behaviors and

wait until other UAVs approach before they attack a target. This can be seen in the

lower right hand corner of Figure (7.9).

161

Figure 7.7: The pertinent aspects of the best solution are the behavior matrix and
the applicable behavior archetypes

Figure 7.8: Demonstration of immediate closing of formation for typical final solu-
tion.

One final difference that may have significant bearing upon performance is that

the attacking behavior relaxes the minimal distance for cluster. This causes the UAVs

to enter into an even closer formation than they do while searching for targets. This

closer formation may make it easier for UAVs to destroy targets. In addition, the

smaller formation may be slightly dangerous due to close proximities and is therefore

not used while searching.

The approach taken to deal with the highest difficulty does not reflect the so-

lutions obtained at the lower difficulties. For example, one particular solution from

the 4th difficulty uses two behavior archetypes: one geared towards reconaissance and

the other for attack. When in the reconnaissance archetype, the UAVs have a large

162

Figure 7.9: This behavior presents a preference to target orbiting rather than attack.
Additionally, allied UAVs, indicated by the blue dots are located at (420, 380), (400,
440), (400, 480), and (400, 520). Targets, indicated by the red dots, are located at
(400, 400) and (600, 600).

formation suited to search and are moderately attracted to other UAVs with a high

target spotted pheromone. When a UAV detects a target first hand, it switches into

the attack behavior which allows it to enter into smaller formations with cooperating

allies.

7.2 heterogeneous UAV Experiment

Like the homogeneous experiment, the heterogeneous experiment resulted in

fitness scores that are below expected quality with respect to fitness. However, the

163

Figure 7.10: Entire simulation paths taken over time for exemplar 4th difficulty
solution.

164

evolved behavior does resemble the expected results in section 6.2.7. Additionally,

the final solutions to this system are very scaleable.

7.2.1 GA Fitness. The performance of the GA with the heterogeneous sce-

nario is similar to that of the homogeneous scenario. There are two major differences

between the apparent performance of the system with regard to the heterogeneous

scenario when compared to the homogeneous. Firstly, the early scores, those in gen-

erations 0-29, are much lower in this experiment. The second major difference is

the evolved behavior’s greater resilience to increases in simulation difficulty. These

aspects can be seen in Figure (7.11).

As mentioned earlier, the two major differences can be easily seen in Figure

(7.11). It appears that the maximal score of any simulation appears to be bounded

in this scenario by around 230 points whereas the homogeneous score actual achieved

the maximal score at many low difficult levels. It is the conjecture of this author

that this is due to the overall reconnaissance capabilities. Since there are no explicit

reconnaissance rules, searching of the environment occurs as a combination of larger

formations and type of flight path. Since the total area that can be search at any one

time, based upon the combined sensor areas of all UAVs, is about 377.8km2 coverage

whereas the homogeneous has about 785.4km2 coverage out of 6400km2, it appears

reasonable to cite reconnaissance ability as the limiting factor for system performance.

The differences in scenario difficult’s effect upon the simulation can be more easily

seen when examining the differences in fitness score as demonstrated in Figure (7.12).

With respect to increasing scenario difficulty, the heterogeneous solutions are

almost half as detrimented. That is to say, the heterogeneous solutions drop about

half as much performance as the homogeneous drop.

The results for all runs appear to have similar performance. Analysis of all

individual scores by generation for all runs indicates a reasonable level of predictable

performance. This analysis was performed using a Kruskal-Wallis analysis of vari-

anceon ordinally ranked scores. The Kruskal-Wallis analysis of variance suggests that

165

Figure 7.11: Mean and Best score by generation for all runs. Vertical lines mark
changes in the scheduled scenario. Standard deviation is indicated by the interval
bars.

Figure 7.12: Mean and Best score changes between generations for all runs. Vertical
lines mark changes in the scheduled scenario. Standard deviation is indicated by the
interval bars.

166

scores resulting from different runs of this particular scenario obtain very similar

results.

Since the Kruskal-Wallis results do not indicate a great deal of similarity between

fitness results after generation 59, it appears that the system runs have developed

distinct behavior ‘species’. Additionally, since the slope of the Kruskal-Wallis values

plateau by the 59th generation, it is realistic to suggest the different system runs have

distinct final solutions. That is, the overall guiding solutions evolved tend to rely

upon potentially different performing strategies. This comparison becomes clearer in

section 7.2.3 when discussing particular behavior solutions. One clear cut reason for

this observed difference is that the evolved behavior representation is twice the size of

the homogeneous behaviors in this experiment. This is due to the individual behavior

matrix and set of behavior archetypes for the Sensor UAV and attack UAVs.

7.2.2 Scalability. To assess the scalability of behavior solutions generated

by this system, the best solutions from each of the thirty runs were simulated 50 times

with UAV target populations as 10 and 3, 20 and 6, and 30 and 9. From these three

sizes of simulation, the general scalability of heterogeneous scenario solutions can be

experimentally obtained.

In general, the best solutions from the heterogeneous runs exhibit excellent

scalability. Though the simulation score suffers from diminishing returns with respect

to UAV population, the UAVs can function well in large groups. Figure (7.14)

demonstrates the average score based upon the number of UAVs.

In addition to checking the scalability of the best solutions from the system runs,

the most scaleable solution was individually tested for even greater scalability with

simulations having 100 and 1000 UAVs against 30 and 300 targets. The performance

of this individual solution if displayed in Figure (7.15).

The extreme standard deviation in Figure (7.15) for the smaller sets of UAVs

is due to two particular things: when less targets and UAVs are being simulated, the

relative impact of interactions between them has a greater effect on score and that

167

Figure 7.13: Kruskal-Wallis ANOVA upon all individuals by generation for all runs.
Vertical lines mark changes in the scheduled scenario.

Figure 7.14: Depiction of heterogeneous solution scalability. The pink line is the
best score and the blue line is the average score. Standard deviation for solution
fitness is indicate by the interval bars.

168

Generation Mean Best Kruskal-Wallis ANOVA

0 86.24006667 192 0.010083089
1 127.7500667 202 0.039391836
2 138.4730667 200.4 0.028283646
3 143.9622 206.4 0.033693174
4 148.1342667 214 0.064047392
5 150.6934 214 0.041649504
6 153.8925333 214.2 0.049579919
7 156.9585333 214 0.039538175
8 158.0998 228 0.033760673
9 159.5764 222 0.033714516
10 154.795 212 0.048464991
11 158.5535333 220 0.059540772
12 159.4295333 212 0.074190961
13 160.1709333 214 0.051087517
14 159.8097333 218.2 0.035044369
15 161.4619333 222.8 0.038851907
16 160.8871333 222 0.051678644
17 161.2082 216.8 0.041169502
18 161.7141333 220 0.060557257
19 162.0137333 225 0.053927806
20 146.739 212 0.093784749
21 151.0460667 221.6 0.077843383
22 151.9044 216.2 0.084906892
23 152.3836 215 0.074509302
24 153.0338667 219.6 0.060548433
25 153.2711333 223.8 0.068979351
26 154.8658667 213.4 0.082270736
27 155.108 214.2 0.055988028
28 155.4127333 215.2 0.069608085
29 154.8322 218.6 0.059025845

Table 7.4: Results for heterogeneous UAV experiment according to all 30 runs for
the first 30 generations. The horizontal lines mark the change of scenario difficulty.

169

Generation Mean Best Kruskal-Wallis ANOVA

30 102.5348 182.6 0.207896832
31 112.4225333 185.6 0.191554127
32 117.3870667 187.2 0.176420296
33 119.1416 192 0.140298657
34 121.1030667 191.4 0.124792697
35 123.7474667 197.8 0.112261029
36 125.723 192.8 0.08252856
37 126.8948667 191.8 0.07954005
38 128.9367333 193.6 0.078710285
39 128.9608 203.6 0.08296039
40 92.97026667 160.6 0.153911436
41 97.04226667 170 0.137142498
42 99.8414 173.4 0.127357511
43 102.1732667 168.8 0.136131595
44 103.4868 166.8 0.132209913
45 106.0355333 178.4 0.120725514
46 106.2991333 169.8 0.101212367
47 107.5107333 180 0.103933208
48 107.6353333 170.8 0.084950378
49 109.8217333 177.6 0.072677328
50 60.18406667 177.6 0.315962704
51 80.53613333 172.8 0.301999668
52 92.90566667 175.1 0.245763441
53 101.6508 182.2 0.209048667
54 106.7294 179 0.185768005
55 108.9186333 189.2 0.180886529
56 113.2431667 183.9 0.164917919
57 118.0710667 186.5 0.172842429
58 120.0234667 190.1 0.166023577
59 124.035 194 0.172579146

Table 7.5: Results for heterogeneous UAV experiment according to all 30 runs for
the last 30 generations. The horizontal lines mark the change of scenario difficulty.

170

standard deviation in this case is being measured directly from the simulation results

rather than solution fitness. It is clear from Figure (7.15) that this behavior for the

heterogeneous experiment is scaleable to at least 100 UAVs in this setup.

In addition, the conclusion made in Section 7.2.2 concerning the effects of area

searched against the solution quality appears to also hold true for the heterogeneous

behavior. When examining the average area searched, its rate of change is very close

to the change in average fitness value. The area searched against the number of UAVs

is plotted in Figure (7.16).

In comparing the relative increase to both score and reconnaissance caused by

increases to population, it becomes evident that, for at least the amounts of popu-

lation tested, that these two attributes are heavily connected. It seems that as the

reconnaissance abilities increase, the fitness score increases as well. In addition, it

also appears that when the area surveiled holds steady and the overall UAV and tar-

get population increases that the general fitness decreases. This suggests the UAV

behavior performance is heavily bound to the reconnaissance ability.

With respect to time for a simulation, the performance of this particular al-

gorithm was measured and is visible in Figures (7.17) and (7.18). The simulation

times appear to be O(n). This conclusion can be seen when comparing the apparent

increase in times in for the 10, 20, 30, and 100 UAV simulations, Figure (7.17), to the

charted results when 1000 UAVs are also simulated, figure (7.18). Additionally, the

worst results also suggest that the time for each simulation is approximately O(n).

However, making such claims for all possible scenario behavior results are difficult.

Since the majority of the calculations performed in each simulation rely upon the

local neighborhood representation used by each UAVs, particularly the behavior rules

in Section 5.3, the runtime is connected to the sensor capabilities of the UAVs as well

as the implemented sensor model features.

7.2.3 Selected Solutions. By using a heterogeneous combination of UAVs,

the resultant swarm must operate both cooperatively when attacking and coopera-

171

Figure 7.15: Depiction of most scaleable heterogeneous solution’s scalability. Stan-
dard deviation for the score based upon all simulations.

Figure 7.16: Depiction of percentage of environment searched against the popula-
tion of UAVs. Standard deviation for the score based upon all simulations.

172

Figure 7.17: Depiction of average simulation runtimes with the 10, 20, 30, and 100
UAV setups.

Figure 7.18: Depiction of average simulation runtimes with the 10, 20, 30, 100,
1000 UAV setups

173

Figure 7.19: Demonstration of target avoidance by sensor UAV.

tively with respect to reconnaissance. What is meant by this is that the UCAVs have

a very limited capability to locate targets by themselves. Likewise, the sensor UAV

has no engagement abilities whatsoever. For these reasons, the swarm must evolve

such that the sensor UAV can safely communicate targets it locates to the UCAVs

and that the UCAVs can cooperatively destroy found targets.

The typical solution behaviors are similar to the expected behaviors but not

expected performance. The UCAVs prefer being in a tight formation centered upon

the sensor UAV. The small formations make target avoidance by the sensor UAV

difficult in most cases. However, it seems that this particular behavior is, in many of

the resulting final solutions, included. An example of this is in Figure (7.19).

Overall, however, the behavior of the best heterogeneous swarm behaviors are

beat the expected fitness. On average, the solutions destroy more than half of the

targets. When searching for targets in the simulations with 10 UAVs, the UAVs

blaze a winding path through the environment. This path is not straight or ordered

in any way which increases the coverage of space. It appears that the overall best

score available for this solution is bounded by the reconnaissance capabilities of the

sensor UAV. Since there is no possibility of specifically organized search patterns

with the rules utilized in this system, the most effective solutions seem to rely upon

brute strength in the way of the sensing UAV’s extended sensor range rather than a

formation.

174

Figure 7.20: Entire simulation paths taken over time for exemplar solution.

Another interesting characteristic that the good solutions tended to evolve is

that sensing UAV tends to stay away from the UCAVs - it does not allow them to

enter into a small formation around it. This particular behavior is in contrast to the

starting positions described in section 6.2.3. Rather, the sensing UAVs stay away

from the main UCAV body and direct it towards the targets.

This avoidance strategy used by the sensing UAVs exhibits interesting scalability

results. Despite the distinct sets of 10 UAVs for larger simulations to start with, as

illustrated in section 6.2.3, the sets of UAVs tend to coallesce into larger singular

formations. In these larger formation, the sensing UAVs occupy locations on the

periphery of the swarm whereas the UCAVs tend to move towards the center of the

formation and enter into exceptionally high density formations. These particular

behaviors can be seen in Figures (7.21) and (7.22).

These formations are highly scaleable. The sensing UAVs tend to want to enter

into orbit patterns around target that they detect. Additionally, this causes other

sensing UAVs that are nearby to turn the main swarm body towards a detected

target. For example, if the northwestern most sensor UAV in Figure (7.22) detects a

target to the north, it turns towards the target and influence its neighboring sensor

175

Figure 7.21: Demonstration of highly successful small-scale heterogeneous forma-
tion.

Figure 7.22: Demonstration of highly successful heterogeneous formation when
scaling.

176

UAV to turn as well. The neighboring UAV also influences the main UCAV body to

proceed northward.

Additionally, the best solution of all 30 runs was tested individually for scalabil-

ity. This particular solution demonstrated exceptional scalability as shown in Figure

(7.15). The drop in fitness scores associated with the best solution is a direct result of

increased overlap in target engagement zones as speculated in Section 7.1.2. Simply

put, as the area around targets becomes more dangerous due to their overlapping

engagement ranges, UAV attrition rises.

With explicit analysis of the best performing heterogeneous solution, the situa-

tions in which each behavior archetype is used is examined. These particular situa-

tions are displayed in Figure (7.23) for the sensor UAVs and Figure (7.24) for the

UCAVs.

From Figure 7.23), it is clear that the sensor UAVs rely upon a mix of behaviors.

However, examination of the different behavior archetypes indicates that they all

appear to cause the same general effects. The only real difference is the changes in

in rule threshold radii. This can be seen in Table (7.25) illustrating sensor UAV

encoding.

As the sensor UAV searches, its threshold for UAV cohesion, Behavior archetype

3 - radius 1, is much greater than the other radii. This prevents sensor UAVs from

prefering to enter into small formations with the UCAVs. Additionally, the radius for

repulsion from other UAVs is much greater than the other behaviors. This also causes

the sensor UAV to be actually prefer having a large distance between itself and other

UAVs.

By comparison, the UCAV encoding, displayed in Figure (7.26), are relatively

similar. That is to say that the UCAVs prefer attacking targets, if possible. When

targets are not available, they prefer to enter into as tight a formation as possible.

Since active communication is enabled with the heterogeneous solutions, the UCAVs

177

Figure 7.23: Demonstration of when particular behaviors for a sensor UAV are
used. Sensor UAVs are located at (200, 200), (400, 520), and (450, 350). UCAVs are
located at (200, 245), (200, 250), (204.3, 247.5), (405, 440), (395, 440), (300, 350),
and (300, 300). Targets are located at (400, 400) and (600, 600).

Figure 7.24: Demonstration of when particular behaviors for a UCAV are used.
Sensor UAVs are located at (200, 200), (400, 520), and (450, 350). UCAVs are
located at (200, 245), (200, 250), (204.3, 247.5), (405, 440), (395, 440), (300, 350),
and (300, 300). Targets are located at (400, 400) and (600, 600).

178

Figure 7.25: Encoding of the best Sensor UAV pertinent behaviors.

Figure 7.26: Encoding of the best UCAV pertinent behaviors.

have ample ability to attack visible targets. This can be more clearly seen in Figure

(7.27).

Figure (7.27) specifically highlights the effects of communication upon UCAV

attack patterns. There are two main concepts that are gleaned from this figure:

the UCAVs are incompetent when operating alone and that active communication

improves UCAV attack behaviors. In examining the southeastern target in Figure

(7.27), it becomes apparent that the limited sensor range of the UCAVs heavily im-

pedes their ability to attack targets. However, in examining how the sensor UAV at

(350, 350) in Figure (7.27), the synergism between the sensor UAVs and UCAVs with

regard to attacking becomes apparent. Basically, the UCAVs are not able to operate

well without sensor UAVs.

7.3 Summary

Overall, the behaviors evolved here appear to be both scaleable and meet the

overall fitness expectations. In that regard, the homogeneous solutions relied upon

179

Figure 7.27: Field plot of typical UCAV behavior. Sensor UAVs are located at
(200, 200), (400, 520), and (450, 350). UCAVs are located at (200, 245), (200, 250),
(204.3, 247.5), (405, 440), (395, 440), (300, 350), and (300, 300). Targets are located
at (400, 400) and (600, 600).

180

small tight formations to improves success in attacking targets. This particular be-

havior resulted from the increased scenario difficulty when the targets have superior

engagement range. This approach, small tight formations, is not indicative of suc-

cessful homogeneous solutions through system runs. Rather, the UAVs prefer more

successful search formations when they successfully accomplish the mission without

as small attack formations.

The heterogeneous solution also had interesting behaviors that appear quite

scaleable. The UCAVs also rely upon small formations. However, since the sensor

UAVs do not engage targets, they evolved better searching capabilities. This partic-

ular mix of behaviors allows the sensor UAVs to effectively guide the UCAV masses

towards targets with great success.

All in all, the system demonstrates effectiveness in evolving behavior. These

behaviors, given different scenario limitations like communication and attack ability,

enables the simulated UAVs to effectively search and destroy targets.

181

VIII. Conclusions

With respect to the design and use of a SO model for successful UAV operation, it is

successful. The SO model allowed for the evolution of a multi-agent system which in

most cases, conferred a scaleable cooperative set of behaviors upon the UAV systems.

Though the resulting behaviors were not quite as effective as expected with

regard to the number of targets destroyed, they did demonstrate surprising qualities.

For example, it was seen that a smaller formation, though it diminished reconnaissance

capabilities, was often favored at harder difficulties since it required less loitering and

collapsing of the the formation for successful attack prosecution.

Future research with this particular system suggests the development and test-

ing of additional behavior rules designed for explicit reconnaissance purposes. This

may solve the conjecture that reconnaissance ability is the limiting factor for the

heterogeneous scenario’s performance.

8.1 Definition of SO Model

The self-organization model created for UAV swarms is successful. It provides

the feature of self-organization directly to the UAV systems. Success in implementing

the creation of a macro-system out of the many operating UAVs is almost by default.

In this case, the assessment of fitness upon the group as a whole rather than individual

performance with regard to the genetic algorithm also aided in the group collective-

ness. The UAV system here functions as a singular cooperative team that successfully

destroys opposing targets rather than a set of loosely interacting individuals.

System wide behaviors are successfully created by the UAV interactions. In

many cases, the direction that the UAV groups travel is the result of interactions.

The approaches towards attacking are also the result of interactions. In this respect,

both explicit and implicit communication facilitate the system interactions.

The UAVs, in their cooperation, perform better than individual UAVs. In this

case, this is clearly demonstrated when examining the effective engagement ranges of

182

the UAVs compared to the targets. Since the UAVs must pass through the target’s

greater engagement range before even being able to attack it, singular UAVs are

not able to succeed. This can be most clearly seen when described in Table (4.3).

Additionally, in the heterogeneous scenario, the UCAVs are extremely limited by their

lack of sensor range and the sensor UAVs cannot even attack targets. In the second

experiment, not only are the UAVs incapable of individually damaging a target before

being destroyed themselves, but the UAVs that can attack the targets have limited

sensor capability. In this regard, the solution behaviors evolved for these systems

clearly operate synergistically.

The sensor model used in this system also enforces the locality constrain. Since

UAVs are limited in their ability to sense the environment, in this case restricted by

a unidirectional range, they do not make behavioral decisions with extra information.

This enforces the locality feature for self-organized systems.

Lastly, the UAV system does not rely upon a global strategy or pattern. Rather,

the UAVs rely upon their own localized behavior to make individual decisions. This

approach does not rely upon leaders or a hierarchical structure. It could be argued

that the heterogeneous system relies upon leaders, in a sense, due to the structure

between sensing UAVs and UCAVs. The UCAVs are not nearly as effective without

sensing UAVs as they are with them. However, the particular behavior relationship

is not forced. And, as demonstrated in simulations, whatever leader-like behavior

expressed by sensor UAVs is immediately replaceable. That is to say, in a simulation

with multiple sensing UAVs, the loss of a single sensing UAV does not paralyze the

macro-system as a whole. Instead, it only drops the group performance. It is also

possible to argue that the placement of obstacles on the edges of the simulation area

creates a template for UAV operation. That view is incorrect; creating a border

around the environment does not remove each UAV’s freedom of operation within the

environment.

183

The self-organized design created in this work provides the self-organization

features in systems which implement it.

8.2 Design of Simulation System

As a whole, the simulation system allows for the free modeling of very flexible

UAV behaviors. These behaviors entail a great deal of potential influences from the

Reynolds [66] to target interaction. In fact, in the course of creating the finalized

UAVs behavior rules, many different rule models were simulated. As s behaviorial

model, this system provides a great resource for examining successful UAV behavior

interaction. What is meant by this is that the system easily accepts the incorporation

of behavior rules interacting with a terrain or explicitly geared towards reconnaissance.

The overarching design approach for this system, though not placing a great deal

of emphasis upon extremely high-fidelity modeling, does meet the operating needs for

specifically evolving complex and interacting UAV behaviors. This simulation is not

well suited as a high-fidelity UAV simulator or general UAV simulator, however. This

does not preclude portability of the behavior results in this system. Basically, the

behavior results for specific scenarios is extracted and moved to higher-fidelity multi-

UAV simulators like that created by Kadrovich [35] or that being currently developed

at AFIT by James Slear and Ken Melendez.

This simulator provides an excellent framework for future research examining

multi-UAV behaviors.

8.3 Design of UAV System

The particular UAV system implemented here provides relies upon three specific

features for its success: the UAV system is built around a self-organization model to

explicitly generation cooperative action, the behavior model which allows for multiple

rules, and a simple engagement scheme allowing targets to attack UAVs as well.

184

The self-organization framework was specifically designed to afford the same

general features observed in biological self-organizing systems like colonial insects,

bird flocks, and even fish [11]. As such, it provides a robust, scaleable, and flexible

approach to modeling UAVs. Specifically, the self-organization approach to sensory

locality and approach to group behavior contribute greatly to the UAV system design.

By modeling UAVs with only limited abilities as a whole, they can more flexibly

address their performance. Since the UAVs are restricted to operating in only the

environment that they can see, they do not become overwhelmed by information that

they do not require. Limited neighborhoods, though they do not necessarily result in

the best informed decisions, allows the UAV systems to better scale. Additionally, the

self-organization approach to behavior control and the execution of jobs or missions

provides a much more robust final solution. Since there is no true behavioral leader,

the UAV system does not break when single UAVs are destroyed.

The behavioral model allows the modeling of distinct sets of behavior that ad-

dress different potential situations. The behavior archetype model [63] is effective

in evolving behaviors that can be applied to distinct situations. Similarly, the re-

sulting behaviors are easy to understand - when UAVs are exposed to this type of

environment or situation they act in this manner. For example, the specially analyzed

homogeneous solution in Section 7.1.3 orbits targets rather than attack them directly

when operating alone. This behavior offers clear benefit as it prevents solitary UAVs

from suicidally approaching targets when there is no chance to even damage a target.

Finally, the design of this UAV system incorporates targets that can destroy

UAVs as well. In this case, not only must the UAVs simply find and destroy the

targets, but the UAVs must also develop behavior which can effectively handle targets

retaliating. This places extra constraints upon the evolving behavior in that it must

be robust with respect to UAV attrition. The system must evolve behavior that does

not fail when UAVs are destroyed. In addition, the modeling retaliating targets is

absent in similar works. The UAV system here is original in this regard.

185

8.4 Testing Results

The distinct behaviors evolved by the system met the fitness score expectations.

However, the evolved behavior did not necessary find and destroy targets using the

behavior expected. The homogeneous behavior did not rely upon behavior making

much distinction between searching, closing formations around targets, and engaging

them. In fact, the homogeneous solutions tended more towards hyperaggression [63]

and extremely small formations. This particular result is in response to the solu-

tion behavior’s need to be able to find targets, gather the necessary strength, and

then destroy them. The evolved behavior tends to ignore explicitly searching the

environment.

In contrast, the heterogeneous results seemed to be based upon what jobs the

UAVs individually perform well. The sensor UAVs operate in a continuously passive

searching mode. In this way, the sensor UAVs perform the target search by having

large formations. This effective search allows the UCAVs to maintain a small clustered

formation to quickly engage targets. This particular distribution of work parallels the

UAVs’ abilities. Naturally, the sensor UAVs act as the eyes of a UAV swarm and,

since they are rare, are protected and do not engage the targets whereas the UCAVs

eschew searching and attack the targets communicated to them.

The resulting behaviors were also scaleable. This is especially true for the best

heterogeneous solution. Though there was only enough time to test this single solution

in a large scale way, the results demonstrated that the cooperative behavior scales at

least to 100 UAV population and performs better than smaller populations.

The behaviors evolved to deal with the particular scenarios are successful.

8.5 Future Investigation

The research performed in this document is expandable in many ways. These

particular vectors for future research include new rules and senses, multi-objective

evolutionary algorithms, and creating agents with more abilities.

186

The particular behavior rules implemented in this investigation deal mostly with

formations and target handling rules. There are no rules addressing reconnaissance

or navigation. Additionally, the senses are limited to detecting the density of UAVs

and the presence of targets. Future research could address these limitations and po-

tentially correct specific difficulties this investigation encountered. By adding specific

reconnaissance rules, the swarm systems is capable of more sophisticated searching.

Additionally, by modifying the target sensor to also track the number of targets, it

may be possible to evolve behavior that avoids overlapping target engagement zones

and attacks lone targets or weak points in formations. There are a great many ways

in which the rules and senses could be modified and tested.

With respect to the evolutionary scheme, the system currently evolves search

and attack abilities simultaneously with a fitness assessment that judges the attack

success. This fitness assessment assumes that for the solutions to successfully destroy

targets, they must first locate them. By using a multi-objective evolutionary algo-

rithm, the fitness of solutions could be judged in many different ways. For instance,

solutions might be judged on their separate abilities to search the environment, sur-

vive the simulation, and successfully destroy targets. The results from this form of

evolution would give rise to behaviors that are applicable to more than simply ef-

fective target engagement. Another particular way in which the evolutionary scheme

could be expanded is to allow conjoined evolution of the UAV characteristics as well as

the behavior. This form of evolution allows the physical models and individual UAV

characteristics to evolve and better utilize the simultaneously evolving behaviors.

A final way in which this research could be expanded is to assume the UAVs are

more computationally capable and have memory of their environments. By allowing

the UAVs to remember their environments, a large range of new possibilities are in-

troduced. For example, pheromonal signals could be used to mark different places the

UAV has previously been. True, this pheromonal approach could lead to each UAV

having a different pheromonal map of the environment. However, explicit communi-

cation could be extended to allow UAVs to share their individual pheromonal maps.

187

This particular activity becomes even more effective if the UAVs must frequently re-

turn to a centralized location when they exhaust their fuel for instance. Refueling

becomes a time when the UAVs could share their knowledge of the environment.

Though this investigation yielded a great many interesting results, it can also

serve as the basis for much future research.

8.6 Final Remarks

This investigation successfully achieved its objectives. A mathematical model

for UAV, environment, and self-organized behavior was created. This model was

experimentally demonstrated to be successful in a simulation developed to address

UAV behavior. This simulation system evolved behavior which is well suited to the

particular simulations in which is was tested.

The efficacy of a self-organized approach to multi-UAV behavior has been suc-

cessfully shown. This approach should be used in future research.

188

Appendix A. Low-Level Simulation Design

A bottom-up view of the different components within the simulator itself can

provide a glimpse at the particular structure for the system. Additionally, this

description demonstrates the implementation of system design in Chapter 4 to the

simulator system.

In general, the simulation itself was created with JAVA using RMI [51]. The

implementation language and parallelization scheme were selected to maximize the

potential computation farm. Java, since it is an interpreted language, is portable.

In addition, RMI allows object transmission between the clients and master. In

combining these features with a client driven algorithm, discussed in Appendix B, the

number of clients is not limited at system run time. Additionally, the system does

not require a communication backplane between the master and clients. This allows

computers which are connected by only general AFIT network to operate as clients

as compared to those with a message passing interface (MPI).

With regard to the system accuracy, the simulator uses only single and double

precision values. This software architecture supports the 300,000 individual simula-

tion executions that are performed for each system run.

A.1 Environment

The environment is the symbolic structure in which all entities reside. Defined

by [75] as “the total of circumstances surrounding an organism or group of organisms”,

the environment has a very large role. As such, it is very difficult to describe other

elements within the simulation without first discussing the environment.

The environment contains the object representations for all other entities within

it as well as its spatial dimensions. The different entities; UAVs, target, and obsta-

cles; are saved as individual sets that correspond to each specific type. True, this

set structure does not describe all potential entities that could exist within the envi-

ronment in reality. Civilians are an example of discluded entities that exist in a real

world system. The included elements are chosen to be simulated specifically since

189

they describe the pertinent simulation elements for this research. In addition to the

pertinent entities for simulation, the environment also includes with a specific two

dimensional size. These dimensions describe the general size for simulation for an

overhead 2D view. An individual environment instantiation, represented by e, has

many different attributes. These attributes include the size of the environment, the

number and type of UAVs, the number and type of targets, as well as the number and

type of obstacles. The spaces in which these different attributes and exist suggest the

existence of an environment space that defines its own feasible instantiations. This

space is composed of the UAV, target, and obstacle spaces along with the chosen envi-

ronment size. These distinct spaces are represented by As for agents or UAVs, Ts for

targets, and Os for obstacles. Additionally, the dimensions in which the environment

size space exist are represented as R×R. Equation (A.1) describes the space, Es, in

which all environment instantiations exist.

Es , (R×R)× (As)× (T)× (Os) (A.1)

The allowable dimensions for environment size, R×R, are real numbers rather

than integers. This was chosen to have greater fidelity with respect to UAV motion in

the simulations. Additionally, these numbers are assumed to be the maximal values

while the minimal value is set at 0. This means that the actual size of the environment

is constrained in the range of [0...R] × [0...R]. These values are implemented as

doubles [32]. Doubles were chosen since the allow greater value range than floats,

integers, or longs.

With respect to the actual entities existing within the environment, they are

stored in distinct ArrayLists [78]. The ArrayLists allow more flexible addition and

subtraction of individuals while providing potentially direct access to indexed items.

There exists an individual ArrayList corresponding to each set of UAVs, targets,

and obstacles within an environment instantiation. There is no specific order to the

190

ArrayLists storing entities for the environment. This is because there is no overriding

characteristic demanding some entities preempt others.

A.2 UAVs

The UAVs themselves have the most degrees of freedom within the simulation

architecture. Their design addresses feasible motion, sensor model attributes, com-

munications attributes, target engagement attributes, and behavior specific qualities.

When these different attributes are combined, the resulting range of UAVs for simula-

tion is very large. However, this large size for UAVs allows freedom in UAV instantiate

that reflects many different types and abilities of UAVs. These different values are

stored within the object representation for each UAV.

A.2.1 Physical Model. The implemented physical mode for UAVs allows

different vehicular mass; thrust; turn-ratios; maximum speed; minimum speed; wing

planform, s; air density; and coefficient of drag, Cd. These distinct values are used

to model the flight characteristics of different aircraft. In this case, these values are

associated directly with each each type of aircraft and not allowed to change. Rather,

they are used to modify the direction of travel for a UAV in accordance with section

5.4.2. Equation (A.2) demonstrates the feasible range of UAV physical characteristics.

U.Mphysical , mass×maxThrust× turn×speedmax×speedmin×s×air density×Cd

(A.2)

In Equation (A.2), each UAV’s physical model, represented by U.Mphysical,

operates within the physical model space created by combining all specific attributes.

For use, these values are saved within the symbolic representation of each UAV. In

this way, these values are called upon for use in modifying each UAV individually.

To allow accuracy in representation, these values are modeled as JAVA doubles [32].

191

The specific range for these values are [0.0...∞] for each except turn. That last value

operates in the range of [0.0o...180.0o]

A.2.2 Sensor Model. The UAV sensor model described in Section 5.2 relies

upon one UAV specific value: the UAV’s sensor range represented by Sr. For this

model to operate, the mechanism applying the model must be able to obtain the

UAV specific value. To facilitate application between UAVs and their sensor range,

the value for the range is directly associated with each UAV. In this guise, the UAV

sensor model, U.Msensor, operates simply within the space created by the sensor range

values.

U.Msensor , Sr (A.3)

The sensor range, like the UAV physical model constraints, are implemented as

a single JAVA double [32]. The range for the sensor range implementation is in the

interval of [0.0...∞]. This enables more fidelity than simple integer values.

It’s worth noting that the sensor model facilitates distinction between what a

UAV ‘sees’ and what it does not ‘see’. It provides the values used to determine the

subsection of the environment that a UAV ‘sees’. As such, the sensor model aids in

dividing the environment into what can be seen and therefore interacted with.

A.2.3 Communications Model. Like the sensor model, the communication

model only requires a single value to operate, Cr. This value, the maximum commu-

nication range, is used to determine what UAVs within communication range receive

the message. This simplistic communication model for active communication, de-

scribed symbolically in Section 5.2.1, relies upon only a single UAV specific value for

operation. This value is also associated with each individual UAV.

U.Mcommunication , Cr (A.4)

192

This value, Cr, is implemented as a JAVA double [32] in the range of [0.0...∞].

This implementation, similar to for the UAV sensor model, allows a multitude of

expression ranges and compatibility to double math in JAVA without conversions.

A.2.4 Engagement Model. Modeling engagement between the UAVs and

targets requires more information than used by the sensor and communication models.

These attributes include the starting hit points of a UAV, H; its maximal engagement

range, Ar; and the amount of damage that it does per simulation second, Dam. These

distinct values combine to create an operating space for the engagement model of a

UAV. This model is illustrated in equation (A.5).

U.Mengagement , Ar ×H ×Dam (A.5)

In Equation (A.5), the UAVs have a specific range of abilities with regard to

engagement. These distinct abilities constitute another range in which UAVs can

be different. When implementing, each of these values was implemented as a JAVA

double [32]. This again allows more fidelity in simulation.

A.2.5 Behavior Model. The behavior model is the most important model for

this research. It contains information essential for the particular UAVs to decide what

behaviors they implement at any specific time. As a result of the decision making

process for the individual UAVs, the entire space of all behavior archetypes (BAs),

(archetype1× ...×archetypen); the space of perceptron connection strengths counted

by specific sense, (sense1× ...× sensem)n; and the target spotted sense values, p, are

part of the behavioral model inclusions to the UAV values. These values combine to

create the space of all behavioral models is illustrated in Equations (A.6).

U.Mbehavior , (archetype1 ∗ ... ∗ archetypen)× (sense1 ∗ ... ∗ sensem)n × p (A.6)

193

Each archetype in this design has 12 distinct attributes. These attributes con-

stitute the necessary information to change the behavior rule weights and some dis-

tinct radii of rule applicability. Additionally, with this design, the values for the rule

weights and the perceptron weights are limited to 32 distinct values. The behavior

rule weights are normalized to JAVA doubles [32] in the range of [0.0...1.0] while the

sense weights are normalized to integers in the range of [−16...15]. This is due to

the five bit representation described in Section 4.3.2 for each gene. Additionally, the

target spotted signal operates at specific values in the set {0, .01, .1, 1}. These values

combine to allow a more exact description of the behavior model space, U.Mbehavior.

The full range of values for each behavior model is illustrated in Table (A.2.5).

Value Number

Number of Genes in each BA 12
Number of possible values for each Gene 32
Number of BAs (n) 3
Different Mixes of BAs (3212)3

Number of Senses (m) 2
Perceptron weights for each sense 32
Number of different perceptrons (322)3

Total Behavior Model Space Size (3212)3 ∗ (322)3

Table A.1: Listing of the intervals of operation for each behavior model and the
size of the behavior model space, U.Mbehavior.

A.2.6 UAV State in Simulation. Particular to the simulation is the ‘mal-

leable’ UAV state. The above models describe information that does not necessarily

change between simulation intervals. However, there does exist information that

changes between UAV simulations. This changeable information operates as distinct

UAV states whereas the static information, which does not change in this simulation,

is not considered part of the UAV state. This does not preclude possible changes of

the static values in future research, rather, it is simply the values that are changed in

the simulator’s current incarnation.

194

The changeable attributes associated with each UAV are its current position,P ;

velocity of travel, D; an index to the current implemented behavior archetype,BA; the

current target spotted value for each UAV, p; the current UAV hit points,H; as well as

a simplified subsection of the environment created by the sensing and communication

models composed of N̂ for UAVs, T̂ for targets, and Ô for obstacles. The feasible

space of UAV state is described in Equation (A.7).

SUAV , Pspace ×Dspace ×BAspace × pspace ×Hspace × N̂ × T̂ × Ô (A.7)

It is important to realize that the simplified environment representation elements

are all subsets. That is each set is less than the environment’s total representation.

For example, for UAV U , N̂ ⊆ A− U , T̂ ⊆ T , and Ô ⊆ O.

The particular values that do no implicitly change with regard to UAVs are still

included in each UAV’s symbolic representation. This implementation choice was

made to facilitate multiple UAV types and models operating simultaneously in the

simulation. Each of these values combine to create the modeling space in which all

UAVs must exist, U.M . This space is described symbolically in Equation (A.8).

U.M , U.Mphysical×U.Msensor×U.Mcommunication×U.Mengagement×U.Mbehavior (A.8)

State also provides a partition between attributes which change and attributes

that are not intended to change. These unchanging static attributes are represented,

for a UAV U , by the symbol Ustatic. The different attributes that fall within Ustatic

are associated with the different models described in this appendix. Table (A.2.6)

describes the space of this collection of attributes.

Within the UAV framework created by combining UAV state and non-state

attributes, the space of all UAVs, As, can be constructed. This space is described in

Equation (A.9).

195

Value Model

Mass physical
Max thrust physical
Max Turn rate physical
Max speed physical
Minimum speed physical
Wing Planform physical
Coefficient of Drag physical
air density physical

Sensor Range sensor

Active Communication Range communication

Attack Range engagement
Damage per second engagement

Entire Behavior Model behavior

Table A.2: Listing of the UAV attributes that do not belong within the SUAV space.
Rather, these attributes make up the static USTATIC attributes.

As , SUAV × USTATIC (A.9)

A.2.7 UAV Summary. In summary, UAV entities are the combination of

attributes required for various models. These values are separated into static or

dynamic values as needed for simulating based upon state. The dynamic values,

defined in Section (A.7), constitute UAV state and are explicitly intended to change

as the simulation operations. However, the static values are not intended to change

as the system operates. The full space for UAV or agent instantiation is created by

combining the static and state related attributes as demonstrated in Equation (A.9).

A.3 Targets

With respect to the UAV models defined in Sections A.2, targets are functionally

identical. They operate within the same constraints issued to the the UAVs regarding

physical motion, sensing, communication, engagement, behavior, and even their state.

The differences between targets and UAVs are created by the way in which they

196

operate and since they are pigeon-holed into the environment’s target set. These

differences are made clear in Section A.5. The reason that this particular approach is

chosen over the creation of an entirely new type of symbolic object is that it facilitates

future development into more complex behaviors. Equation (A.10) displays the

dimensions of target space.

Ts , As (A.10)

A.4 Obstacles

Obstacles are very simple objects within the simulation. With regard to the

simulation, they exist as a single point or a line segment without a two dimensional

volume.

When used as a single point, the obstacle exists as a vector of real numbers

within the environment range. This means the particular representation of each ob-

stacle must fall within the environment’s size. With respect to the obstacle avoidance

rule, described in Section 5.3.10, point obstacles are only subject to the second part

of obstacle avoidance, UR10part2. This is because the first part of obstacle avoidance

requires an angle to compare the UAV velocity to. Since a single point obstacle does

not have a specific angle in which the line segment operates, there is no way to apply

the first part of standard obstacle avoidance.

As a line segment, the obstacle exists as a line segment terminated by vectors

of real numbers. The endpoints are not specifically required to exist within the space

defined by the environment. However, there is no specific effect cause by the end

points if they are outside the environment; effectively, the points of the line segment

that intersect with the edge of the environment act as the endpoints. Line obstacles

constitute the most complex obstacle implemented in this work. This is because more

complex obstacles are created by by combining the two-point obstacles into polygonal

shapes.

197

The different types of effective obstacles suggests two obstacle spaces depending

upon the type of obstacle. These spaces are defined in Equations (A.11) and (A.12).

O1 , (R×R) (A.11)

O2 , (R×R)× (R×R) (A.12)

The two distinct spaces can be combined to facilitate both obstacle types simul-

taneously. This is demonstrated in Equation (A.13).

Os ,


 O1 points

O2 segments


 (A.13)

The values for obstacle end points are implemented as JAVA doubles [32] in

the range specified by a particular environment. Given a particular environment

instantiation, e ∈ Es, with dimensions defined as e.Xmax and e.Ymax, the particular

intervals of obstacle endpoint values are [0.0...e.Xmax] and [0.0...e.Ymax].

A.5 Simulation updates

Updates to the system are started with the environment. The updates are

decomposed into roughly 3 categories: determining areas of vision, calculating next

state, and performing the state ‘rollover’.

The environment must first inform each UAV and target what subsection of

the environment they can sense and interact. To do this, the environment first de-

termines whether individual UAVs ‘see’ each other relying upon their sensor models.

Then, it determines what targets each UAV senses and what UAVs each target de-

tects. Following this, the environment models the explicit communication. After this,

the environment then specifically allows each each UAV to detect the appropriate

obstacles.

198

Following the division of the environment into appropriate smaller environment

representations; the N̂ , T̂ , and Ô for UAV states; the UAVs and targets generate their

next suitable state. This generation of next state does not change each of their current

values. Rather, these next state values are saved internal to each UAV and target as

copies. This is done to prevent later UAVs and targets operating later in the update

from computing their next values based upon already changed states. At this point,

each UAV computes its own appropriate next direction individually. Additionally,

after its next state is determined, each individual UAV also computes the effects of

its engagement model. Following the calculations for each UAV, each target makes

its determinations for its next state.

The final major phase for simulation operation is the system update phase. The

environment causes each UAV and target to change their current state into the next

state that they calculated and saved. The synchronous update created by having each

UAV and target wait to update their state supports a synchronous simulation update.

If the update were asynchronous, there is no need for a ‘rollover’ step. Rather, each

UAV or target would immediately change their states as that information becomes

available.

It is not specifically necessary that the environment perform the simulation

updates. Rather, a different simulation component could perform the updates and

computations. The selection of the environment to perform these computations was

chosen since it already stores the information used in these computations.

As mentioned in Sections 6.2.7 and 6.3.7, each simulation is performed until all

of the targets are destroyed, all of the UAV are destroyed, or 3000 synchronous updates

have been completed. These simulation termination constraints effectively limit the

necessary simulation for each system. Due to the fitness function construction, a

simulation has obtained the maximum score when all targets are destroyed. Hence,

with regard to the target population, there is no reason to continue simulation when

all targets are destroyed. Likewise, when all UAVs are destroyed, the fitness for a

199

particular simulation does not change. Finally, the 3000 update limit facilitates faster

simulation while providing suitable time for the simulations to fully examine the effects

of different behavior architectures. The final state observed after the simulation is

completed constitutes the final state of the system.

A.6 Connections to the GA

The genetic algorithm, designed in Section 4.3, enables the evolution of well

performing behavior architectures. Rather than designing the UAV behavior manu-

ally, the particular behaviors are evolved. This approach to behavior design is taken

since manually creating SO systems is extremely difficult [13].

With respect to the genetic algorithm, the operation of the simulation holds

very little bearing. In this rough sense, the genetic algorithm does not make any

differentiate between approaches taken by the behavior to search for and destroy the

targets. Rather, the genetic algorithm performs its fitness function evaluation based

upon comparisons between the initial state and final state of the simulation. All

other information used in the system is basically considered irrelevant to the genetic

algorithm.

With regard to evolution of behavior, the genetic algorithm does associate the

fitness values to only behavior attributes. That is, the fitness function is specifically

applicable to evaluating only the utilized behavior model in the context of relative

target population. This implies that the fitness function is influenced by both the

starting state and final state of simulation.

A.7 Mapping to SO model

This simulation is easily compared to the original SO symbolic model created in

Section 4.1. That model describes a multi-level view of a SO system. This split view

operates upon both a micro and a macro level. The micro level is concerned simulating

the interactions between entities; it closely models the behavior and operation of each

200

agent. This level delves into the specific information and the exacting details. The

micro level makes explicit distinctions between different behaviors.

The macro level of the SO system, on the other hand, is not concerned with the

information available at the simulation or micro-level. In fact, it is not able to make

distinctions like those made at the simulation or micro level. Rather, the macro-level

is concerned with the results of micro-level interactions.

This split between SO micro and macro level is clearly seen in the system very

distinctly. There is a clear distinction between micro level operation and macro level

operation. The macro level operation for this system occurs on the master computer.

This computer only performs the distribution of work to the client nodes and the

genetic algorithm updates between generations. This work occurs at the macro-level

since the actual operation does not depend upon the detailed interaction between

each individual entity in each simulation. True, the master computer associates each

GA individual solution, which is essentially a representation of a specific behavior

model instantiation, with a fitness derived at the macro-level. However, each genetic

algorithm individual’s encoding has no meaning to the master system computer -

the master does not address the actual behaviors encoded by each individual in the

population. Rather, the individual encodings are only something to which a fitness is

associated. This separation of views is made clear in Figure (A.1).

The client nodes, however, delve very deeply into the micro-level. That is, the

clients perform the actual simulation and modeling of each object and their inter-

actions. Each client models each UAV’s operation with all appropriate information.

This information is necessary to suitably model the UAV and target behaviors. In

this case, the simulation requires information about each state to generate the next

state. When the UAVs are actually simulated, they require more information than is

available at the macro-level.

The macro-system serves to filter out the unnecessary and extraneous infor-

mation from the fitness evaluation while the micro-system provides the information

201

Figure A.1: The connections between different system representations are demon-
strated.

necessary to explicitly perform the simulation. This separation supports the devel-

opment of suitable behaviors by not placing undo restrictions upon the particular

behavior approach taken by the well-performing solutions evolved by the system.

A.8 Summary

This appendix described the low-level simulation design and implementation.

This appendix reexamines the design and construction of the simulation to ensure that

it corresponds to the SO design for this system. The meta-level SO system designed

in Section 4.1 is mapped to the simulation low-level design and implementation.

202

Appendix B. Simulation Design and Software Engineering

The engineering of the system is very important and effects the operation of the

entire system. However, it does not specifically affect the operation of correctly

designed and implemented mathematical model. For this reason, the engineering of

the software system itself is not necessarily a topic of interest with regard to the design

of a system. Rather it is relegated to ancillary information.

This appendix describes the approach to construction the system used for this

research. It covers the way in which the work is partition and split as well as the

general approach taken to creating the system algorithms.

To perform the experimentation for this research, a high speed simulator is re-

quired. This simulator needs to be able to perform a great deal of simulations of

varying time lengths, with enough fidelity to illustrate potential solutions. However,

with greater simulation fidelity comes a greater computational footprint; by increas-

ing simulation accuracy, assuming static code efficiency, the amount of computation

required to complete the necessary simulation increases. To aid in handling the addi-

tional need for a great deal of computation, a distribution model is used.

B.1 Fidelity Requirements

Of great importance to simulation is the accuracy of such a simulation. In-

creasing the fidelity of a simulation increases its accuracy at the cost of increased

computation. For this reason, the effective fidelity and simulation accuracy is limited

to subjects having high-level bearing upon experimental results while disregarding

those that are unimportant [40]. In this sense, one only simulates those aspects and

attributes which hold the most importance to simulation results.

B.1.1 UAV. Naturally, the UAV model holds a great deal of importance

for a UAV behavior simulator. However, the UAV characteristics and fidelity do not

out-perform the specific behavioral limitations tested in the simulator. That is, one

203

does not attempt to simulate the UAVs in three dimensions unless the behavior being

tested acts in those three dimensions.

The particular features that are selected for this system are illustrated in the

preceeding sections of this chapter. They include the use of a Dubin’s Car UAV Imple-

mentation [56]; a simple communication model; simple sensor implementation; easy

motion calculation; no explicit implementation of fuel, damage or ammunition; and a

simple combat model. The selection of these simpler computation models still meets

fidelity needs for simulation without providing undo computation for simulation.

B.1.2 Environment. The environment has no features other than retaliating

targets that interact with the UAVs. In this model, there are no terrain connected

effects other than simple obstacles. The environment exists solely to facilitate en-

counters between the UAVs and targets. Basically, the environment acts as an empty

space bordered by obstacles.

B.1.3 Behavioral. The UAV behavior is the key objective for this simulator.

As such, the UAV behavior is well developed. In this case, the fidelity of UAV

behavior is defined by two key characteristics: behavior expression guided by ”rule”

combinations in a behavior archetype architecture and independently determinable

UAV behavior.

These two features allow UAVs to act autonomously when compared to the

global system of UAVS. This capability is essential in keeping with the two-level SO

approach used by this work.

B.1.4 Overall Fidelity. Combined, the system accuracy is at a high enough

level for experimentation in evolving self-organized behavior. At this level of fidelity

the resultant SO behaviors are limited. For example, the UAVs cannot develop behav-

ior to operate in the third dimension or sophisticated formations relying upon speed

modification. Likewise, the effects of the environment upon UAV - and inherently

204

behavioral - performance. The described level of fidelity is adequate to evolve UAV

behavior.

B.2 Simulation Divisibility

Unlike simulators geared towards a single serial simulation like that produced

by [14], the requirements for this simulator, being that it includes an embedded evo-

lutionary algorithm, suggest additional ways to divide the work. Simulators like that

created by [14] perform simulations in serial - each simulation is performed one at a

time. This technique is effective when the results from only a single simulation are

needed. When the number of simulations grows exceptionally large, performing all

possible simulations in parallel is an extremely viable option.

Divisible portions of simulation can be identified from a general understanding

of the overall simulation amount composition. Assuming that there are x solutions

per generation and each individual is simulated y times to prevent inaccurate results,

then the work could be divided up in multiple ways across the different individuals.

B.2.1 Task Decomposition. Each individual solution in the evolutionary

algorithm requires a fitness evaluation. This fitness evaluation is generated by per-

forming multiple simulations and processing their results. Since each the EA requires

each solution have a fitness value to properly construct the next generation, there is a

natural computation barrier which cannot be overstepped by parallelization: the EA

must generate the new solutions to test before they can be distributed.

The total simulation performed in each GA generation can be simply described

as a large number of simulations of a set of individual solutions. Figure (B.1) better

illustrates the relationship between these levels.

This structure of simulations lends itself to division in many ways. Like Cor-

ner’s work [14], simulations themselves could be divided to execute actual simulation.

Another possible way to divide the work is according to the each solution. In this

way, the distributed computation components individually perform all of the simula-

205

Figure B.1: The computation performed for each generation can be seen as a series
of ‘M’ simulations performed on ‘N’ individuals.

tions required to derive the fitness of an individual solution. Furthermore, each single

simulation could be assigned to for individual execution completion.

Along the same lines as [14], individual simulations could be performed by more

than one node in a distributed environment. This method appears effective when

executing higher fidelity simulation. Additionally, the distributed simulations could

be implemented in a parallel discrete environment simulator (PDES) [25]. Exemplar

PDES include SPEEDES [68], which Corner used in [14] and WARPED [50].

Division of single simulations does, however, suffer from some restrictions and

problems. For example, investigation into the code produced for [14] shows that

it must perform certain calculations repeatedly. Likewise, the system produced by

Corner requires each logical UAV process perform large amounts of redundant com-

munication.

These method for division appears to support a great deal of fidelity, however.

For example, this greater fidelity shows as time to accomplish simulation of 55 UAVs

for 12 time steps by [14] is about 4.8 seconds [68]. Using [14] as an example, it seems

that, for the fidelity required, division of each simulation does not well achieve the

goals of this project.

206

Of the three example ways to divide the simulations proposed, dividing the

work based upon each evolutionary individual seems that it utilizes the least amount

of communication overhead but also create the largest amount of processor idle time

when the number of repeated simulations is increased for each individual. These two

claims can both be explained away very simply.

To execute a simulation, a computational component in a distributed machine

needs to receive the pertinent information about the particular simulation to run.

This information contains the individual specific data for an individual - the data

necessary to build a behavioral matrix. Since each individual solution requires mul-

tiple simulations and those simulations are assigned together in bulk, only a single

message assigning the simulations is necessary.

Despite the reduce communication offered by this approach, there is a significant

disadvantage. There is a limited amount of work that can be assigned in each EA

generation. This means that, in each generation, the production of new work waits

until all solutions in a generation have been evaluated. This means that if simula-

tion of a particular behavior matrix requires more computation due UAV and target

longevity, executing each of that solution’s simulations may take longer than others.

This variance in simulation runtimes can cause other processors to remain in an idle

state and wait until the next generation. Figure (B.2) demonstrates this problem.

In Figure (B.2), the problem dividing the tasks by the simulations required to

evaluate each individual can be clearly seen - three of the four simulators result in a

significant percentage of idle time.

This last method, dividing the work into individual simulations, appears to

offer the best performance of the three according to the fidelity needs for this project.

This method addresses the problems with division by simulating each individual and

offers a corrective trade-off. Division by individual is prone to large idle times due

to the large size and commit of each set of simulations. If the assigned behavior

model results in long simulations, completing all of those simulations takes a great

207

Figure B.2: The relative idle times for simulators 2 through 4 can be seen as quite
significant since they must wait for simulator 1 to finish before more work can be
obtained.

deal of time whereas other behavior model may create short simulation times. The

large disparity in times taken to complete each assigned set of work is minimized by

reducing the size of each assigned set of work. The best way to describe this method

is in Figure (B.3).

Figure B.3: The relative idle times for simulators 2 through 4 can be seen as less
significant than as division between solutions.

Figure (B.3) illustrates how shrinking the size of assigned work decreases the

potential resultant idle time. The maximal idle time is the time taken to evaluated a

single solution.

208

Table B.1:
Division Type Pros Cons
Each Simula-
tion

Supports higher fidelity repeated computation and
excessive communication

Each Solution Very Low Communication Large potential idle times
Each Simula-
tion

Idle times bounded by simu-
lation time

individual Communication
required to assign each sim-
ulation

Table B.2: Side-by-side comparison of task division strategies.

The only apparent problem with this approach is that by assigning each indi-

vidual simulation, the amount of communication increases dramatically. Instead of

communication limited to only once for each individual, there are similar communi-

cation associated with each assigned simulation. For this task division strategy to

be effective, the increase in communication time must be less than the potential idle

time in division by individual evaluation.

Based upon [63] which used a serial predecessor to Swarmfare, it is reasonable to

select division by each individual simulation. In [63], the program required an average

of about two to three seconds to perform each individual simulation. Considering that

the data produced in [63] also required 50 simulations of each individual solution to

obtain a reasonable level of accuracy, it seems fair to say communicating the overhead

necessary to perform each simulation independently is far less then the 100 to 150

seconds of potential idleness produceable by division along each evaluated individual.

B.2.2 Load Balancing approaches. Determining the time that taken to

complete a single simulation appears to be similar to the halting problem [10]. The

difference, in this case, is that there is too much randomness involved in each simula-

tion to predict early termination. This being the case, load balancing schemes which

rely upon expected run-times are not applicable [18]. Instead, any applicable load

balancing scheme must rely upon another method.

209

For this particular problem, the recommended method for task division seems

to also lend itself towards a load balancing scheme. By simply distributing available

singular simulations to each processing component when they finish the previous

simulation, the work balances itself to a great degree. For example, if one computing

component is slower than the others, it receives less work since it requests work less

often. The following figure demonstrates how, if one processing component is slower

than they others, the work is balanced.

Figure B.4: Simulator 1 is a less capable simulator. The farming model, by virtue
of its operation, naturally performs load balancing.

It is worth noting that, in this form of balancing scheme, the maximum poten-

tial idle time that could result is defined by the time taken to perform the slowest

simulation on the slowest process. This dynamic method for load balancing is actually

well known in literature as the farming model [51].

B.2.3 Structural and Parallel Decomposition. Since the balancing system

utilizes a farming model, it seems reasonable to breakup the implementation structure

to best support such a model. The farming model requires a process to generate new

jobs. These jobs are the individual simulations making-up each GA solution fitness

evaluation.

This need for a separate process to generate and assign jobs [18] seems to best

lend itself to a master-slave [27] structural decomposition. In this particular model,

210

there remains a single processor acting as a master and generating the new jobs. Ad-

ditionally, the master contains the necessary mechanisms to create the next following

generation. With this software, the actual creation of the next generation requires

negligible computation when compared to the actual simulations. For this reason,

parallelizing the GA is not a consideration.

B.3 Communication Library

For the most part, selection of the actual communication library is limited by

the fact that the Swarmfare version parallelized from [63] is in JAVA. Since the orig-

inal program that was parallelized is in Java, the available communication libraries

are limited to those implemented in Java. These communication libraries include

CORBA and RMI. CORBA is a communication specification that happens to have

java implementations [51]. This communication specification, since it is not limited

to strictly a Java implementation, allows communication between clients and servers

that created in many different languages.

RMI, on the other hand, is a strictly Java communication system. Both RMI

and CORBA utilize an interface system to communicate objects using skeletons and

stub classes. RMI is implemented in Java whereas CORBA interfaces are defined in

IDL [51]. Since CORBA uses a framework designed for greater compatibility whereas

RMI is made to function with only Java systems and to be able to transmit objects,

RMI appears favorable since the overall communication time is not as much a concern.

It is for this reason that RMI is selected as the communication language for the parallel

system.

B.4 Basic Algorithms

To best implement a farming model with the least amount of server overhead,

the majority of work is distributed to the clients. The distribution of as much com-

munications work and algorithmic operation to the clients allows the best scalability.

211

Table B.3:
1 StaticInformation = master.getStatics();
2 clientName = StaticInformation[0];
3 simulationInformation = master.getJob(clientName);
4 While(simulationInformation 6= null)
5 simulationChromosome = simulationInformation[0];
6 jobIndex = simulationInformation[1];
7 simulationName = simulationInformation[2];
8 Simulation = new Simulation(simulationChromosome, simulationName,

StaticInformation)
9 Simulation.runSimulation();
10 master.setScore(simulationName, Simulation.getFitness());
11 simulationInformation = master.getJob(ClientName);
12 while(simulationInformation[0] = WAIT)
13 Wait;
14 simulationInformation = master.getJob(clientName);
15 end while
16 end while
17 Terminate

Table B.4: Client operation algorithm

The clients initiate communication with the server in all cases - clients request work

and clients send the results of that work back.

Since the server functions in a mainly reactive way, there is not as much a need

for explicit server algorithm design. However, the client algorithm is well designed

since they drive the program. The general client algorithm follows.

Even though the client does not actively assign the jobs and collect results, the

functions that are triggered remotely using RMI are significant. The server has three

major functions that it performs: sending the static simulation information when

requested, sending a new job when requested, and accepting simulation results.

Sending the static simulation information is essentially little more than a client-

server based ”get” operation. A client, when starting up, contacts the server to get

the information is unchanging between all simulations. Also, the client receives its

numbered name which is used when it corresponds with the server.

212

When a client attempts to get a new job from the server, it sends its name and

attempts to get the first available job. In the event that no jobs are available - when

they have all been distributed and the server is waiting for their results to generate

new jobs - the server returns a ’waiting’ job back to the client and cause it to wait.

To associate job fitness scores with the EA individuals, the clients must send

the simulation results back to the server. The server tracks the number of jobs that

it has no results for. Once the results of all of those simulations are known by the

server, the server can perform the calculations necessary to create the next set of jobs.

In all cases, the clients terminate when they detect that the server has termi-

nated.

213

Bibliography

1. “Evolving Clustering Formation”. Website: http://www.swarm-
bots.org/index.php?main=3&sub=35&conpage=s25b, June 2005.

2. Airforce-technology.com. “Predator RQ-1/ MQ-1 / MQ-9 Un-
manned Aerial Vehicle (UAV), USA”. online: www.airforce-
technology.com/project/predator/2/22/2006, February 2006.

3. Altenburg, Karl, Joseph Schlecht, and Kendall E. Nygard. An Agent-based Sim-
ulation for Modeling Intelligent Munitions. Technical report, North Dakota State
University, Department of Computer Science and Operations Research, 2002.

4. Back, Thomas. Evolutionary Algorithms in Theory and Practice. Oxford Univer-
sity Press, New York, NY, 1996.

5. Back, Thomas. Binary Strings, chapter Evolutionary Computation 1, 132–135.
Institute of Physics Publishing Ltd, 2000.

6. Baldassarre, Gianluca, Stefano Nolfi, and Domenico Parisi. Evolving Mobile Ro-
bots Able to Display Collective Behaviors. Technical report, Institute of Cognitive
Science and Technologies, National Research Council(ISTC-CNR); Viale Marx 15,
00137, Rome, Italy.

7. Basu, Prithwish, Jason Redi, and Vladimir Shurbanov. “Coordinated Flocking
of UAVs for Improved Connectivity of Mobile Ground Nodes”. MILCOM ’04.
Monterrey, CA, November 2004.

8. Beard, Randal W. and Timothy W. McLain. “Multiple UAV Cooperative Search
under Collision Avoidance and Limited Range Communication Constraints”.
IEEE Conference on Decision and Control, Maui, HI, December 2003.

9. Bonabeau, Eric, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence From
Natural to Artificial Systems. Oxford University Press, 1999.

10. Boyer, Robert S. and J. Strother Moore. “A Mechanical Proof of the Unsolvability
of the Halting Problem”. Journal of the Association for Computing Machinery,
Vol 31(No 3):441–458, July 1984.

11. Camazine, Scott, Jean-Louis Deneoubourg, Nigel R. Franks, James Sneyd, Guy
Theraulaz, and Eric Bonabeau. Self-Organization in Biological Systems. Prince-
ton University Press, USA, 2003.

12. Castillo, O. and L. Trujillo. “Multiple Objective Optimization Genetic Algorithms
for Path Planning in Autonomous Mobile Robots”. International Journal of
Computers, Systems and Signals, Vol. 6(No. 1):pp 48 – 63, 2005.

214

13. Collier, Travis C. and Charles Taylor. Self-Organization in Sensor Networks.
Technical report, UCLA Department of Organismic Biology, Ecology, and Evolu-
tion, Box 951606, Los Angeles, CA 90095-1606, December 2003.

14. Corner, Joshua. Swarming Reconnaissance using Unmanned Aerial Vehicles in
a Parallel Discrete Event Simulation. Master’s thesis, Air Force Inst. of Tech.,
March 2004.

15. Coveney, Peter V. “Self-Organization and complexity: a new age for theory,
computation and experiment”. The Royal Society, 361:1057–1079, May 2003.

16. Crowther, Bill and Xavier Riviere. “Rules of Flocking”. Website6:
http://www.eng.man.ac.uk/Aero/wjc/Research/Flocking/rules of flocking.htm.

17. Crowther, W.J. “Flocking of autonomous unmanned air vehicles”. Aeronautical
Journal, Vol. 107(No. 1068):pp. 99–110, February 2003.

18. Day, Richard, Jesse Zydallis, Gary Lamont, and Ruth Pachter. “Analysis of Fine
Granularity and Building Block Sizes in the Parallel Fast Messy GA”. Congress
on Evolutionary Computation, Vol. 1:pp. 127–132, 2002.

19. Denning, Petter, Jack Dennis, and Joseph Qualitz. Machins, Languages, and
Computation. Prentice Hall, Inc, 1978.

20. Dickey, Alistair. Modeling Robot Swarms Using Agent-based Simulation. Master’s
thesis, Naval Postgraduate School, Monterey, California, 2002.

21. Dictionary.com. “Forage Entry”. http://dictionary.reference.com/search?q=foraging,
June 2005.

22. Dorigo, Marco, Vito Trinni, Erol Sahin, Roderich GroB, Thomas H. Labella, Gi-
anluca Baldassarre, Stefano Nolfi, Jean-Louis Deneubourg, Fracesco Mondada,
Dario Floreano, and Luca M. Gambardella. Evolving Self-Organizing Behaviors
for a Swarm-bot. Technical Report TR/IRIDIA/2003-11, Universite Libre de
Bruxelles, Institut de Recherches Interdisciplaires et de Developpements en Intel-
lignece Artificielle, June 2004.

23. Eshelman, Larry. “The CHC Adaptive Search Algorithm. How to have Safe
Search When Engaging in Nontraditional Genetic Recombination”. Foundations
of Genetic Algorithms, 1991.

24. Floreano, Dario and Joseba Urzelai. “Evolutionary Robots with On-line Self-
Organization and Behavioral Fitness”. Neural Networks, 13:pp. 431–443, 2000.

25. Fujimoto, Richard M. “Parallel Discrete Event Simulation”. Communications of
the ACM, Vol. 33(No. 10), October 1990.

26. Gaudiano, Paolo, Bejamin Shargel, Eric Bonabeau, and Bruce T. Clough. Swarm
Intelligence: a New C2 Paradigm with and Application to Control of Swarms of
UAVs. Technical report, Icosystem Corporation, 10 Fawcett St, Cambridge, MA

215

02138 and Air Force Research Laboratory, Control Sciences Division, Wright-
Patterson AFB, OH 45433.

27. Grama, Ananth, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction
to Parallel Computing. Pearson Education Limited, 2003.

28. Grinstead, Charles and J. Snell. Introduction to Probability. American Mathe-
matical Society, 2 edition, 1997.

29. Haupt, Randy and Sue Ellen Haupt. Practical Genetic Algorithms. Wiley Inter-
science, 2004.

30. Hebert, Adam. “Learning to Live With the Pilot Retention Problem”. Journal
of the Air Force Association, Vol. 84(No. 1), January 2001.

31. Heylighen, F. “Self-Organization”. Principia Cybernetica Web, January 1997.

32. IEEE. “ANSI/IEEE Standard 754-1985, Standard for Binary Floating Point
Arithmetic”, 1985.

33. Jeanson, Raphael, Colette Rivault, Jean-Louis Deneubourg, Stephane Blancos,
Richard Forniers, Christian Jost, and Guy Theraulaz. “Self-organized aggregation
in cockroaches”. The Association for the Study of Animal Behaviour, (7871):169–
180, November 2004.

34. Jin, Hui-Dong, Kwong-Sak Leung, Man-Leung Wong, and Zong-Ben Xu. “An
Efficient Self-Organizing Map Designed by Genetic Algorithms for the Traveling
Salesman Problem”. IEEE Transactions on Systems, Man, and Cybernetics-Part
B: Cybernetics, 33(6):877–888, December 2003.

35. Kadrovich, Tony. A Communications Modeling System for Swarm-based Sensors.
Ph.D. thesis, Air Force Inst. of Tech., WPAFB, OH, March 2003.

36. Klausner, Kurt A. “Comand and Contrl of air and space forces requires significant
attention to bandwidth”. Air Space Power Journal, November 2002.

37. Kleeman, Mark P. Self-Organization. Technical report, Air Force Institute of
Technology, Wright-Patterson Air Force Base, Dayton, OH, 2004.

38. Kleeman, Mark P. and Gary B. Lamont. Optimal Scheduling of Combined Flow-
Shop, Job-Shop Scheduling Problems using an MOEA with Variable Length Chro-
mosomes. Technical report, Air Force Institute of Technology, Department of
Electrical and Computer Engineering, 2005.

39. Klein, Mark, Richard Metzler, and Yaneer Bar-Yam. “Handling Emergent Re-
source Use Oscillations”. IEEE Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans, Vol. 35(No. 3):327–336, May 2005.

40. Ko, J., A. Mahajan, and R. Sengupta. “A Network-Centric UAV Organization for
Search and Pursuit Operations”. Proc. of the 2002 IEEE Aerospace Conference.
March 2002.

216

41. Kopp, Carlo. “Robot Ravens?” Journal of Electronic Defense, September 2002.

42. Korgul, Artur. “Novel Method for Identifiation of Aircraft Trajectories in Three-
Dimensional Space”. Journal of Guidance, Control and Dynamics, 23(6), Novem-
ber 2000.

43. Krock, Lexi. “Spies that Fly: Timeline of UAVs”. online:
www.pbs.org/wgbh/nova/spiesfly/uavs.html, February 2006.

44. Leigh, Ryan, Tony Morelli, Sushil Louis, Monica Nicolescu, and Chris Miles.
“Finding Attack Strategies for Predator Swarms Using Genetic Algorithms”.
IEEE Congress on Evolutionary Computation. September 2005.

45. Lohn, Jason D., Gary L. Haith, Silvano P. Colombano, and Dimitris Stassinopou-
los. “A Comparison of Dynamic Fitness Schedules for Evolutionary Design of
Amplifiers”. Proceedings of the First NASA / DoD Conference on Evolvable
Hardward, 1999.

46. Lotspeich, James T. Distributed Control of a Swarm of Autonomous Unmanned
Aerial Vehicles. Master’s thesis, Air Force Institute of Technology, Wright-
Patterson Air Force Base, Dayton, OH, March 2003.

47. Lua, Chin A., Karl ALtenburg, and Kendall E. Nygard. “Synchronized Multi-
Point Attack by Autonomous Reactive Vehicles with Local Communication”. Pro-
ceedings of the 2003 IEEE Swarm Intelligence Symposium.

48. Mamei, Marco, Andrea Roli, and Franco Zambonelli. “Emergence and Control
of Macro-Spatial Structures in Perturbed Cellular Automata, and Implications
for Pervasive Computing Systems”. IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 35(No. 3):337–347, May 2005.

49. Marocco, Davide and Stefano Nolfi. Emergence of Communication in embodied
agents: co-adapting communicative and non-communicative behaviours. Technical
report, Institute of Cognitive Science and Technologies, CNR, Viale Marx 15,
Rome, 00137, Italy.

50. Martin, Dale E., Timothey J. McBrayer, Radharamanan Radhakrishnan, and
Philip A. Wilsey. WARPED - A TimeWarp Parallel Discrete Event Simulator.
Technical report, University of Cincinnati, 1990.

51. Maymoud, Qusay H. Distributed Programming with JAVA. Manning Publications
Co, 2000.

52. Maza, Ivan and Anibal Ollero. Multiple UAV cooperative searching operation using
polygon area decomposition and efficient coverage algorithm. Technical report,
Grupo de Robotica, Vision y Control, Escuala Superior de Ingenieros. University
of Seville; Camino de los Descubrimientos, s/n; 41092 Seville, SPAIN.

53. Milam, Kevin. Evolution of Control Programs for a Swarm of Autonomous Un-
manned Aerial Vehicles. Master’s thesis, Air Force Inst. of Tech., WPAFB, OH,
March 2004.

217

54. Mitchell, Tom M. Machine Learning. McGraw-Hill, 2003.

55. Oh, Choong K. and Gregory J. Barlow. “Autonomous Controller Design for Un-
manned Aerial Vehicles using Multi-objective Genetic Programming”. Proceedings
of the 2004 Congress on Evolutionary Computation, 2004.

56. Panizza, L. and R. Frezza. “Paths of bounded curvature with minimal number of
maneuvers”. IEEE Intelligent Vehicles Symposium, 2000.

57. Parker, Gary, Timothy Doherty, and Matt Parker. “Evolution and Prioritiza-
tion of Survival Strategies for a Simulated Robot in Xpilot”. IEEE Congress on
Evolutionary Computation. September 2005.

58. Parker, Gary, Matt Parker, and Steven Johnson. “Evolving Autonomous Agent
Control in the Xpilot Environment”. The 2005 IEEE Congress on Evolutionary
Computation, September 2005.

59. Parrish, Julia, Steven Viscido, and Daniel Grunbaum. “Self-Organized Fish
Schools: An Examination of Emergent Properties”. Biological Builletin, (202):pp
296–305, June 2002.

60. Parunak, H. Van Dyke. “Making Swarming Happen”. Presented at Conference
on Swarming and C4ISR, January 2003.

61. Parunak, H. Van Dyke and Sven Brueckner. “Entropy and Self-Organization
in Multi-Agent Systems”. Autonomous Agents, ACM 1-58113-000-0/00/0000.
International Conference on Autonomous Agents, 2001.

62. Parunak, H. Van Dyke, Michael Purcell, and Robert O’Connell. Digital
Pheromones for Autonomous Coordination of Swarming UAV’s. Technical Re-
port 2002-3446, American Institute of Aeronautics and Astronomy, 2002.

63. Price, Ian. Evolving Probabilistic UAV Behavior. Technical report, Air Force
Institute of Technology, Wright-Patterson Air Force Base, Dayton, OH, 2005.

64. Price, Ian. Self-Organization in UAVs. Technical report, Air Force Institute of
Technology, Wright-Patterson Air Force Base, Dayton, OH, 2005.

65. Prieditis, Armand, Mukesh Dalal, Andrew Arcilla, Brett Groel, Michael Van Der
Bock, and Richard Kong. “SmartSwarms: Distributed UAVs that Think”. Com-
mand and Control Research and Technology Symposium, San Diego, CA, June
2004.

66. Reynolds, Craig W. “Flocks, Herds, and Schools: A Distributed Behavioral
Model”. Maureen C. Stone (editor), Computer Graphics 4, volume 4, 25–34.
SIGGRAPH, July 1987.

67. Roche, James G. and John P. Jumper. Hearing on Fiscal Year 2003 National
Defense Authorization Budget Request. Technical report, House Armed Services
Committee, 2003.

218

68. Russell, Matthew A., Gary B. Lamont, and Kenneth Melendez. “On Using
SPEEDES as a Platform for a Parallel Swarm Simulation”. Proceedings of the
2005 Winter Simulation Conference, 2005.

69. Saber, Reza Olfati. Flocking for Multi-Agent Dynamic Systems: Algorithms and
Theory. Technical Report Technical Report CIT-CDS 2004-005, California Insti-
tute of Technology, 2004.

70. Saber, Reza Olfati and Richard M. Murray. Graph Rigidity and Distributed For-
mation Stabilization of Multi-Vehicle Systems. Technical report, California Insti-
tute of Technology, Control and Dynamical Systems 107-81; Pasadena, CA 91125,
February 2001.

71. Saber, Reza Olfati and Richard M. Murray. “Flocking with Obstacle Avoidance:
Cooperation with Limited Information in Mobile Networks”. IEEE Conference
on Decision and Control, Maui, HI, December 2003.

72. Schlecht, Joseph, Karl Altenburg, Benzir Md Ahmed, and Kendall E. Nygard.
“Decentralized Search by Unmanned Air Vehicles using Local Communication”.
Mun Y. Joshua R (editor), Proceedings of the International Conference on Arifi-
cial Intelligence, volume 2. Las Vegas, NV, 2003.

73. Scott, William B. “UAVs/UCAVs Finally Join Air Combat Teams”. AviationNow,
July 2004.

74. Shalizi, Cosma, Kristina Shalizi, and Robert Haslinger. “Quantifying Self-
Organization with Optimal Predictors”. Physical Review Letters, Vol. 93(No.
11), September 2004.

75. Soukhanov, Anne H. and Kaethe Ellis (editors). Webster’s II New Riverside
University Dictionary. The Riverside Publishing Company, 1984.

76. Stern, Christopher. “Satellite makers rake in war dollars”. Washington Post,
March 2003.

77. Sujit, P.B. and D. Ghose. “Multiple UAV search using agent based negotiation
scheme”. Proceedings of the American Control Conference, pp 4997–5002, 2005.

78. Sun Microsystems, Inc. “Java 2 Platform Standard Edition 5.0 API Specification”.
website: http://java.sun.com/j2se/1.5.0/docs/api/, 2004.

79. Taillard, Eric D. Ant Systems. Technical Report IDISA-05-99, Istituto Dalle
Molle di Studi sull’Intelligenza Artificiale, Corso Elvezia 36, CH-6900 Lugano,
Switzerland.

80. Talbot, David. “The Ascent of the Robotic Attack Jet”. TechnologyReview.com,
March 2005.

81. UAVForum. “Predator”. Website: http://www.uavforum.com/vehicles/production
/predator.htm, 2005.

219

82. Wu, Annie S., Alan C. Schultz, and Arvin Agah. “Evolving Control for Distrib-
uted Micro Air Vehicles”. IEEE Conference on Computational Intelligence in
Robotics and Automation, Vol. 48:pp. 174–179, 1999.

83. Xiao, Jing, Zbigniew Michalewicz, Lixin Zhang, and Krzysztof Trojanowski.
“Adaptive Evolutionary Planner/Navigator for Mobile Robots”. IEEE Trans-
actions on Evolutionary Computation, Vol. 1(No. 1):pp 18 – 28, 1997.

84. Zaera, N., D. Cliff, and J Bruten. “(Not)Evolving Collective Behaviors in Syn-
thetic Fish”. Fourth International Conference on Simulation of Adaptive Behav-
ior, 1996.

220

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03-2006 MASTER’S THESIS Sept 2004 — Mar 2006

Evolving Self-Organized Behavior
for

Homogeneous and Heterogeneous
UAV or UCAV Swarms

Price, Ian C, 2nd Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/06-11

Mike Foster, mike.foster@wpafb.af.mil
Virtual Combat Laboratory
AFRL/SNZW(AFMC)
2241 Avionics Circle
Wright-Patterson Air Force Base, OH 45433
786-4899x3030

Approval for public release; distribution is unlimited.

This investigation uses a self-organization (SO) approach to enable cooperative search and destruction of retaliating
targets with swarms of homogeneous and heterogeneous unmanned aerial vehicles (UAVs). To facilitate specific system
design, a facilitating SO algebraic framework is created that emphasizes scalability, robustness, and flexibility. This
framework is then used to implement a UAV behavior architecture relying upon rules governing formation and target
interaction. Sets of applicable behaviors are created by weighted summation of the rules where different weights act as
distinct behavior archetypes. Appropriate behavior archetypes are based upon sense information distilled from the
environment and a simple perceptron mapping. Successful behaviors are evolved within this architecture using a genetic
algorithm. This approach tests a swarm of UAVs, when sensor and attack abilities are both homogeneous and
heterogeneous, against targets with superior engagement range. Resulting behaviors are highly cooperative, generally
scaleable, and robust.

self-organizing systems, remotely piloted vehicles, automatic, attack

U U U UU 237

Lamont, Gary B., Ph.D (ENG)

(937) 255–3636, ext 4718

